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Abstract

Exosomes, the intercellular information transmitters in eukaryotes, have potential in hor-

mone therapy and cancer diagnostics and are thus of great interest in current research.

Information about the protein profiles of exosomes can be used to trace tumors and in-

fections, as the protein profiles are determined by the cells that the exosomes are secreted

by. Previous studies have found a correlation between the protein profiles of exosomes

and their elasticity. It is therefore of importance to determine the elastic properties of

exosomes. This usually takes the form of analysis of the data from atomic force micro-

scopes, using the Hertz model.

The aim of this study was to provide a general understanding of the elastic proper-

ties of spherical objects under pressure, to determine whether or not balloons would be

suitable models of exosomes and to discuss the reliability of the Hertz model. This was

examined through measurements on different balloons. A linear relationship between the

compressing force on the balloon and its displacement was found. Furthermore, the spring

constant of a balloon was found to be dependent on the internal pressure and the shape

of the tip that it was indented by. The conclusion drawn was that balloons and exosomes

differ in terms of the relation between the compressing force and the displacement. Fu-

ture research may, however, be needed to investigate further potential similarities between

exosomes and balloons.
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1 Introduction

Exosomes are vesicles secreted by cells via exocytosis which can be found in biofluids such

as urine, blood, and saliva in mammals [1]. During exocytosis, exosomes are formed by

inward budding and scission of vesicles from the adjacent endosomal membranes. As ex-

osomes accumulate, intracellular sacs are created around them, see Figure 1a. The sacks

than fuse with the cell membrane, the exosomes are released into biofluids and enabled

to be taken up by other cells, see Figures 1b and 1c. [2]

(a) An intracellular sack containing
exosomes is created.

(b) The sack fuses with the cell membrane.

(c) The exosomes are secreted by the cell.

Figure 1: Exocytosis.

The presence of exosomes is required in numerous biological processes. One example is

antigen presentation, where antigens are broken down by exosomes, allowing T-cells to

recognize them and trigger an immune response. Other instances are transportation of

mRNA or infectious agents and intercellular communication. [1]

Exosomes are essential to intercellular communication and substance transmission

and can as such give rise to a change in cell behaviour and function in the body. Exo-

somes are therefore involved in the development of a number of disorders such as cancer,

neurodegeneration and inflammatory diseases. [3]
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Consequently, the detection of single receptor molecules on exosomes bearing charac-

teristics of infections and diseases enables early diagnosis of maladies such as cancer. A

further possible area of utilization is hormone therapy, as exosomes can be used to mimic

drug delivery systems. [1]

Previous studies suggest that the exosome elasticity is influenced by the protein pro-

files of the exosomes. During an infection, the exosomes are marked with different proteins

than their characteristic ones [4]. Determining the connection between the protein profiles

of exosomes is therefore of interest, as it could be used in diagnostics and for medical

treatments.

Previous studies have shown that different types of deformability can be observed

depending on the type of measurement. The values of the elasticity-characterizing quan-

tities vary from report to report, suggesting differences in how the results of different

methods are obtained or analyzed. [5]

A change in the morphology of exosomes determined by the loading force acting on

them can be observed in many cases. Indentation in the middle of the vesicle and an

increase of its lateral dimensions are the results of a greater loading force. When put

under low stress, exosomes possess the ability to regain their original form after deform-

ing, i.e. their properties are elastic. However, the effects of greater stress are permanent

deformation and eventual disintegration. [1]

As exosome elasticity and deformability vary depending on the circumstances, it is of

interest to obtain a general understanding of these quantities.

1.1 Atomic Force Microscopy

A common way of examining the elastic properties of exosomes is using atomic force

microscopes (AFM), see Figure 2 [6]. The AFM uses piezoelectric crystals in order to

determine the force that is exerted by the cantilever tip on the sample [6]. These are

crystals made up of materials such as ZnO, GaN and InN and have a non-central sym-
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metry. When stress is applied to the piezoelectric crystals, an electric potential is created

due to the polarization of the ions [7]. The measurement of this potential enables the

determination of the magnitude of the force acting on the crystals, which corresponds to

the magnitude of the force exerted by the cantilever on the sample [8].

The size of a pixel being indented by the cantilever tip can be adjusted before the

scanning. A pixel is indented once during one scan. Since the exosomes in the sample are

in a solution, a number of scans might be necessary to localize them and adjust the pixel

size so that the surface of an exosome is indented by the cantilever tip in various points. [9]

Figure 2: The measurements are done by the AFM as follows: a
cantilever is let down by a distance z so that its tip (represented
by the circle) touches the sample. When in contact with the

sample, the cantilever is bent upwards, moving up by a distance
x. Consequently, the sample is indented by the distance δ = z− x.

In the AFM, a laser beam is reflected by the cantilever and received by a photodetec-

tor, see Figure 3 [10]. The intensity of the light reaching the photodetector depends on

the amount of light that is reflected towards it. That is determined by the tilting of the

cantilever which is dependent on its interaction with the sample. Consequently, the in-

dentation δ of the sample can be determined by the intensity of the laser light received

by the photodetector. [11]
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Photodetector
Laser beam

Cantilever

Tip

Sample surface

Figure 3: A laser beam reflected by the cantilever in an atomic
force microscope.

Information about both the force exerted on the sample and its indentation is collected by

the AFM. Consequently, an image of the sample determined by its topography is created.

Additionally, this imaging technique allows for analysis of the data by plotting the force

exerted on the sample as a function of its indentation for each area unit that is examined.

From such plots, the elastic properties of the sample can be calculated. [6]

1.2 The Hertz Model

In order to describe the elastic properties of a body, the definition of the quantities stress

and strain is essential. The stress τ on a body is defined as τ = F
A

for a tensile or

compressive force F acting on a cross sectional area A of the body perpendicular to F ,

and the corresponding strain ε is given by ε = ∆l
l
in which ∆l is the resulting deformation

of the original length l of the object. A material-specific constant that relates τ to ε is

the Young’s modulus, Y that is defined as Y = τ
ε
. [12]

For e.g. a solid block, τ and ε are easily measured or calculated. For spherical, partially

viscous bodies such as exosomes, however, determining τ , ε and Y is more complicated.

The Hertz model — that gives a relation between the force F acting on a sample in an
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AFM and the indentation δ of the sample — can be used in such cases. This relation is

dependent on the shape of the cantilever tip. For a parabolic tip, the Hertz model gives

F =
4
√
R

3

Y

1− σ2
δ

3
2 (1)

in which R is the radius of the tip curvature as seen in Figure 4 [6], Y is the Young’s

modulus of the sample and σ is the Poisson’s ratio, another material-specific constant

that describes the elasticity of a material, of the sample [6].

Figure 4: The radius of the tip curvature, R.

For a conical tip, the Hertz model gives

F =
Y

1− σ2

2 tanα

π
δ2 (2)

in which α is the semi-opening angle of the cone as seen in Figure 5 [6].

Figure 5: The semi-opening angle of a conical tip.

With the help of this model and the force-indentation plots obtained with the AFM mea-

surements, the Y of the sample can be calculated given that R and α for the tips used

and the σ of the sample are known. [6]

However, the Hertz model has some disadvantages when it comes to determining the

elastic properties of biological samples. For one, the model assumes elastic behavior of

the bodies involved [6]. The elastic properties of a material can be absolutely elastic or

absolutely viscous. Absolutely elastic materials deform instantaneously to the equilib-

rium value of the strain when put under creep (non-dynamic) stress. This strain stands
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in proportion to the applied force. In viscous fluids however, the flow of the fluid that

occurs due to creep stress is indefinite and the velocity of the deformation is dependent

on the viscosity — a material-specific quantity. [5]

As opposed to the assumptions made by the model, the elastic properties of most

materials, including biological samples, are a mixture of absolute elasticity and absolute

viscosity. Another assumption in the model is homogeneity of the material, whereas ex-

osomes are not completely homogeneous [6].

Some of the assumptions made by the Hertz model are accounted for during AFM

data analysis [6]. Additionally, AFM data from previous studies show that the relation

between the compressing force on the exosomes and their displacement is non-linear [5].

However, it is of relevance to ask whether or not a different approach than the Hertz model

offers more reliability when it comes to the determination of the exosome elasticity.

1.3 Aim of Study

In order to mimic the stress that is applied on the exosomes during an AFM scan and

to provide a general understanding of how objects encased in an elastic shell act when

affected by a compressive stress, measurements can be made on balloons. Thus, the

purpose of this study was to examine the elastic properties of balloons, to determine

whether or not balloons could be a suitable model of exosomes and whether or not there

exist models that describe the elastic properties of different objects more accurately than

the Hertz model does.

1.4 A System of Two Springs

According to Hooke’s law, the relation between the magnitude of the compressing force

F acting on a solid, elastic body and the compression ∆l of the body is

F = −k∆l (3)
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where k is the spring constant of the body [13].

l

z

1

2

p

p

1

2

a b

Figure 6: A system of two springs in two different states.

Figure 6 shows a system of two springs, 1 and 2 in two different states, a and b. In b, the

system has been compressed with a length l, resulting in displacement of the point p by

the length z. The change in length of spring 1 is given by z − l, and that of spring 2 is

given by −z. If the compressing force on spring 1 is F , the restoring forces coming from

springs 1 and 2 are also of magnitude F according to Newton’s third law [14]. Equation

(3) implies that

F = −k(z − l) (4)

in which k is the spring constant of spring 1.

This can be applied on a system made up of a tip moved by a spring and a balloon

indented by this tip. The relation between the compressing force F acting on the balloon

and its displacement z may not be linear and could be better described by
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F = k′zd ⇐⇒ log(F ) = log(k′) + d · log(z) (5)

in which d and k′ are constants and k′ can be called the effective spring constant of the

balloon.

If measurements on a system made up of a spring and a balloon are done so that

l, F (z) and k are either directly measured or calculated, it is possible to determine the

value of z for a certain F . In that way, F can be plotted as a function of z and the nature

of the relation between these quantities, i.e. the values of k′ and d can be determined.

Furthermore, the relation between z and F can be compared to the relation between these

quantities for exosomes examined in AFM. This can be done by the comparison of the

relation between F
Fmax

and z
zmax

for AFM data and data obtained with experiments done

on balloons, where F is the compressing force acting on an exosome or a balloon, Fmax

is the maximal compressing force applied during a measurement, z is the displacement

of an exosome or a balloon, and zmax is the maximal displacement observed during a

measurement.

1.5 Propagation of Error

The error in a quantity x that is dependent on the quantities a, b and c can be calculated

according to

σx =

√
(
∂x

∂a
)2σ2

a + (
∂x

∂b
)2σ2

b + (
∂x

∂c
)2σ2

c (6)

in which σx, σa, σb and σc are the errors in the measurements of the quantities x, a, b

and c respectively. [15]
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2 Method

Measurements on balloons bought from a local convenience store were made and comple-

mented with the determination of the spring constant of the spring used.

2.1 Measurements on the Balloons

The measurements were made using the setup shown in Figure 7. The balloon was placed

on a scale with a precision of 1 g. A rod was attached to the table on which the scale

stood and a platform was attached to the rod. A reading of the displacement of this

platform could be noted from an arm, which measured the displacement up to 0.01 mm

precision. A shorter rod was attached to the platform and a pipe, inside of which was a

spring pushing on a tip, was attached to this rod. The movement of the platform was

directly translated into a compression of the spring, resulting in the tip indenting the

balloon. Initially, the tip barely touched the balloon, enabling the spring in the pipe to

maintain its original form. The platform was then successively lowered at intervals of

0.5 mm and the reading on the scale was noted. This was repeated until the platform had

been lowered 26 mm in total. This process was repeated twice with the same balloon.

Measurements were taken with different tips and at different internal balloon pressures

ranging from 1.25 to 2 atm, see Table 1 and Figure 8. Before changing tips, the contact

point for the tip and the balloon was marked and the setup reconstructed so that the tip

touched the balloon in the same point as previously.

Based on the data obtained with these measurements, the force F acting on the

balloon could be calculated according to F = mg, in which m is the mass measured

by the scale and g is the gravitational acceleration in m s−2. Since the compression of

the whole system l was measured, the compression of the balloon z could be calculated

according to Equation (4).
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Figure 7: Schematic figure of the setup used for the measurements
on the balloon. 1: Scale, 2: Balloon, 3: Tip, 4: Spring inside the

pipe, 5: Shorter rod, 6: Arm of platform where the reading can be
noted, 7: Platform, 8: Rod attached to the table.

Table 1: An overview of the different measurements made using
method 2.

Measurement Internal Pressure of Balloon Shape of
the Balloon ±0.0005 atm Tip

1 2 atm 1 dull
2 2 atm 1 sharp
3 1.5 atm 2 dull
4 1.5 atm 2 sharp
5 1.25 atm 3 dull
6 1.25 atm 3 sharp

Figure 8: The tips used in the measurements on the balloon. The
sharp tip on the left and the dull one on the right.
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A linear plot as well as a logarithmic plot for F as a function of z, each with a corre-

sponding linear fit, were plotted with the method of least squares. The R2-values of these

regressions were calculated and the errors for the slopes were derived using Equation (6).

Additionally, F
Fmax

was plotted as a function of z
zmax

.

2.2 Measurement of the Spring Constant of the Spring

The balloon was removed from the setup used previously, and the spring turned upside-

down before it was placed back into the pipe, so that the flat end was the one in the

lower end of the pipe. Then, the platform was lowered so that the flat end of the tip

barely touched the scale, enabling the spring to maintain its original form (see Figure 9).

The platform was successively lowered at intervals of 1 mm, compressing the spring. The

reading on the scale was noted for each time. This was repeated until it had been lowered

6 mm in total. The process was repeated twice.

Figure 9: A schematic figure of the setup used for the
measurement of the spring constant of the spring. 1: Scale, 2: Tip
turned around so that its flat side is in contact with the scale, 3:
Spring inside the pipe, 4: Shorter rod, 5: Arm of platform where

the reading can be noted, 6: Platform.

A regression for F as a function of the displacement of the spring x (corresponding to

the reading on the arm of the platform) was plotted. The fit was made with the method

of least squares and its R2-value was calculated. The error for the slope of this line was
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calculated using Equation (6).

3 Results

Based on the regression obtained using the data from the measurements on the spring, see

Figure 10 in Appendix A, the spring constant k of the spring was found to be 3100 N m−1,

the R2-value of the regression was found to be 0.968, and the potential error span in the

spring constant was found to be ±5.68 N m−1.

The logarithmic plot and the linear regression of F as a function of z gave rise to the

lines presented in Figures 11 and 12 in Appendix B. For the slopes of the fitted lines, the

R2-values of the regressions and the errors for the slopes, see Tables 2 and 3. The plot of

F
Fmax

as a function of z
zmax

yielded the lines in Figure 13 in Appendix B.

Table 2: An overview of the attributes of the logarithmic plot.

Measurement Slope of R2-value of
Logarithmic Plot Line Logarithmic Plot Regression

1 1.07 1.00
2 1.10 0.982
3 1.07 0.992
4 1.12 0.970
5 1.08 0.995
6 1.08 0.933

Table 3: An overview of the attributes of the linear plot.

Measurement Slope of R2-value of Error for
Linear Plot Line [N m−1] Linear Plot Regression Slope of Line [N m−1]

1 -156 0.998 ±0.794
2 -142 0.997 ±0.802
3 -143 0.998 ±0.798
4 -138 0.997 ±0.806
5 -148 0.998 ±0.798
6 -127 0.996 ±0.806
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4 Discussion

Based on the data, the relation between the compressing force F on a balloon and the

displacement z of the balloon could be determined. Derived from this relation, the elastic

properties of a balloon could be compared with those of exosomes.

4.1 Determining the Exponent d in the Proportional Relation

between F and zd

The compressing force acting on an AFM sample is proportional to the displacement of

the sample to the power of 3
2
(parabolic tip) or 2 (conical tip) according to the Hertz

model. In order to determine if this relation is linear in the case of the balloon, the lines

obtained with the logarithmic plot of F as a function of z were used, as the slopes of those

lines should correspond to d according to Equation (5). The slopes of the logarithmic plot

lines presented in Table 2 and the R2-values of the regressions are all roughly equal to 1.

The relation between F and z is thus linear, and the spring constants k′ of the different

balloons can be determined by the slopes of the lines presented in Table 3, as these should

correspond to−k′ according to Equation (3). The deviance from origo on the y-axis can be

neglected. For an overview of the calculated spring constants and their errors, see Table 4.

Table 4: An overview of the calculated spring constants for the
balloons used in the different measurements.

Measurement Spring Constant of Error for
the Balloon N m−1 the Spring Constant N m−1

1 156 ±0.796
2 142 ±0.802
3 143 ±0.798
4 138 ±0.806
5 148 ±0.798
6 127 ±0.806
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4.2 Conclusion

In conclusion, indentation with the sharper tip gave rise to a spring constant up to

21 N m−1 lower than indentation with the duller one. This difference is significantly higher

than the errors for the spring constants. However, this value can vary depending on where

on its surface the balloon is poked. Furthermore, a balloon with lower internal pressure is

found to have a lower spring constant. These differences are also significantly higher than

the errors. However, an exception to this is the balloon used in measurement 5, which is

believed to be an effect of random errors.

Conclusively, the Hertz model does not accurately describe balloons, since there is a

linear relation between the compressing force acting on the balloon and the displacement

of the balloon. Previous studies make it clear that this relation is non-linear for exosomes.

However, the Hertz model assumes that the morphological changes of a sample caused

by the AFM tip are local whereas the pressure inside of a balloon is uniform and the

changes are communicated all over its surface and within. It is left for future research

to determine whether or not exosomes share more similarities with balloons in this sense

and whether or not a different model should be applied. It is also relevant to examine if

there are materials that are similar to exosomes that could be used to mimic them on a

bigger scale in order to supply a model for the calculation of their elastic properties. A

good candidate for such an experiment would be hydrogel, since it is more viscous and

does possibly share more similarities with exosomes.
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Appendix

A Force-displacement Plot for the Spring

Figure 10: A straight line fitted to the data points obtained when the force acting on the
spring, F , was plotted as a function of the compression of the spring x. The equation of
the line is F = 3000x−0.50. According to equation (3), the slope of this line corresponds
to the spring constant of the spring.
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B Plots for the Measurements on the Balloons

Figure 11: log(F ) plotted as a function of log(z). The numbers in the legend correspond
to the measurement numbers presented in table 1. The equations for lines 1 to 6 are
log(F ) = 1.07 · log(z) + 2.29, log(F ) = 1.10 · log(z) + 2.29, log(F ) = 1.07 · log(z) + 2.25,
log(F ) = 1.12 · log(z)+2.32, log(F ) = 1.08 · log(z)+2.28 and log(F ) = 1.08 · log(z)+2.21.

Figure 12: F plotted as a function of z. The numbers in the legend correspond to the
measurement numbers presented in table 1. The equations for lines 1 to 6 are F = −156z−
0.120 F = −142z − 0.140, F = −143z − 0.110, F = −138z − 0.150, F = −148z − 0.130
and F = −127z − 0.140.
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Figure 13: F divided by the maximal force acting on the balloon as a function of z divided
by the maximal displacement of the balloon.
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