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Abstract

The study of turbulent fluid flow often relies on computer simulations, because of the

chaotic nature of fluid dynamics. Modal decomposition aims to extract dominant turbu-

lent structures, called modes, from a simulation of a fluid flow. Modes can be analysed

by themselves, and by combining the most dominant modes, a reduced-order model of

the flow can be reconstructed, giving a less accurate but less complex model of the flow.

Proper Orthogonal Decomposition (POD) is widely used for the properties of the modes

it extracts. Autoencoders are artificial neural networks with architecture suitable for fea-

ture extraction. These two methods were applied to velocity data obtained from direct

numerical simulation of a gas mixture containing N2O4 and NO2 through a channel with

a heated bottom wall. The POD modes were used to identify dominant turbulent struc-

tures of the flow, and the reconstruction quality from using POD and the autoencoder

was compared. Due to the lack of clear turbulent structure in the flow, applying POD was

not very effective in capturing turbulent features, losing 52.2% of the turbulent x-velocity

and 75.2% of the turbulent y-velocity when using 20 modes. However, the autoencoder

model was able to capture more of the turbulent velocity, losing 26.9% of x-velocity and

48.8% of y-velocity when using 2 modes, and only 17.1% and 32.5%, respectively, when

using 20 modes.
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1 Introduction

The movement of fluids appears everywhere in nature and at all scales. The analysis of

fluid flow is applicable to a wide range of engineering fields, including developing efficient

combustion [1], studying heat recovery [2], and studying biotechnological processes [3], as

well as advancing the theory of fluid dynamics. The Navier Stokes equations that govern

turbulent fluid flow cannot generally be solved analytically, implying a large reliance

on numerical and experimental methods for describing the complex flows that occur,

even under elementary flow patterns. Since it is often difficult and expensive to perform

large-scale experiments with fluids, computer simulations are commonly used to model

fluid flow. The modelling of a fluid flow by computers is done by solving the governing

equations of the system numerically. Various algorithms can be employed to perform this

task. One such algorithm is Direct Numerical Simulation (DNS), which solves the Navier-

Stokes equations directly on all scales, without using any turbulence modelling. In order

to create an accurate model with DNS, a fine grid of points are required, making DNS

a very computationally expensive task [4]. In contrast, Large Eddy Simulation (LES)

only computes larger energy-containing scales directly, and smaller scales are modelled

by turbulence models that combine experimental observations with theoretical knowledge

[5]. The idea of LES is that the flow on small scales is not affected much by larger features

of the flow, so little information is lost from not solving for them explicitly. While LES

saves on computation compared to DNS, it is not as accurate [4].

1.1 Modal Decomposition

To analyse fluid flow, a commonly applied method has been to extract dominant features

from the flow, called modes, to then obtain information about the original flow using

the modes. The extraction of dominant features is motivated by observations of common

flow features that appear over a large variety of flows and parameters like the Reynolds

number, a measure of internal forces compared to frictional forces, as well as different
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geometries of the space of the flow [6]. Additionally, as mentioned above, performing sim-

ulations of flows with DNS or similar methods is computationally expensive, so working

with simpler models that still capture the most important features of the flow is essential

for the applicability of computational fluid dynamics. Through modal decomposition, a

reconstruction of the original flow can be obtained by only keeping the most contributing

modes. This is called a reduced order model. The goal of any reduced order modelling is

to reduce the available degrees of freedom while still retaining the information required

to model the system with acceptable accuracy [7].

1.2 Proper Orthogonal Decomposition

Proper Orthogonal Decomposition (POD) is a modal decomposition technique developed

by Lumley [8], that has been widely used for its properties beneficial in analysing fluid

flows. POD also serves as a basis for many other modal decomposition techniques [6].

POD extracts spatial modes with time coefficients to express the original flow q(ξ, t) as

q(ξ, t) = q(ξ) +
∑
i

ai(t)ϕi(ξ). (1)

Here, ξ is a vector used to represent the space of the fluid flow, t is time, and q is

the value of some parameter at a certain point and time. Parameters that are often

studied include velocity, pressure, and temperature. The term q(ξ) is the temporal mean

of the studied parameter: the mean value over all measured time instances, computed

for all points. When this quantity is subtracted from the original flow, the unsteady or

turbulent component of the flow remains, which is then decomposed into modes using

POD. The modes ϕi depend only on the position in the space and are thus often referred

to as spatial modes. Multiplying the modes by their respective temporal (time) coefficient

ai and summing over all such modes gives the decomposition of the original flow.

The way that the spatial modes are constructed with POD gives it two important

properties: optimality and orthogonality. The optimality of POD means that among all
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linear decompositions, POD is able to extract the most features from the flow with the

least amount of modes. If the measured quantity q is velocity, this has the concrete

implication that POD modes, on average, capture the most amount of turbulent kinetic

energy in the flow among all linear decompositions. Orthogonality implies that POD

modes are orthogonal, and consequently that the time coefficients of the modes are linearly

uncorrelated, which is a useful property when constructing reduced order models [9].

We now motivate the two useful properties of POD stated above. The input of POD

is a collection of snapshots, carrying information about the flow at a number of distinct

time instances. Since we wish to decompose the time fluctuating part of the flow as in

Eq. (1), the mean flow is first subtracted from each snapshot to obtain the data

x(tj) = q(ξ, tj)− q(ξ), j = 1, 2, . . . ,m, (2)

where m is the total number of snapshots. Let n be the number of points in the space

of the flow, then the column vector x(t) has n components. The data from Eq. (2) are

arranged into a matrix,

X = [x(t1) x(t2) · · · x(tm)] ∈ Rn×m, (3)

where each column in X has the spatial data from one snapshot. The covariance matrix1

R of x(t) for the m snapshots is constructed as

R =XXT . (4)

The POD modes are the eigenvectors of R, in other words, they are solutions to

Rϕi = λiϕi (5)
1The actual covariance matrix has the factor 1

m or 1
m−1 in front of XXT , but this factor just scales

the eigenvalues in Eq. (5) and therefore carries no significance.
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where λi ⩾ 0 are the corresponding eigenvalues [10]. The eigenvalues are all real and

non-negative since the covariance matrix is symmetric positive semidefinite. The time

coefficients ai(t) are given by

ai(tj) =
1

n

n∑
l=1

x(ξl, tj)ϕi(ξl). (6)

Since the eigenvectors of R are orthogonal (R is symmetric), the spatial modes ϕi are

orthogonal. Moreover, if the modes are indexed such that the eigenvalues are ordered as

λ1 ⩾ λ2 ⩾ · · · ⩾ λn ⩾ 0, (7)

the modes become ordered in terms of how well they fit the data [6]. The optimality of

the POD modes also comes from the modes being solutions to Eq. (5), since the k:th

solution minimises the mean-square error of the reconstruction using k modes, for all k.

This comes from the way the matrix R was constructed. If a reconstruction with k modes

qk is defined at the point ξi and time tj as

qk(ξi, tj) = q(ξi) +
k∑

l=1

al(tj)ϕl(ξi), (8)

then the mean-square error of the reconstruction is

MSE =
1

mn

∑
i,j

(q(ξi, tj)− qk(ξi, tj))2 =
1

mn

∑
j

∥q(ξ, tj)− qk(ξ, tj)∥2, (9)

which can be normalised as
1

m

m∑
i=1

∥q(ti)− qk(ti)∥2

∥q(ti)∥2
. (10)

This is suitable for POD since it offers a physical interpretation if the measured quantity

q is velocity: it is then proportional to the loss of turbulent kinetic energy in the system.

This is because the time-constant part q cancels out of the mean square error, leaving

a quantity proportional to the difference in turbulent velocity squared, which is also
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proportional to the difference in turbulent kinetic energy, or the loss of turbulent kinetic

energy.

Finding the eigenvectors of R ∈ Rn×n is often computationally infeasible, since the

number of points n usually is very large. To overcome this, a method known as Snapshot

POD, developed by Sirovich [11], is used. Instead of solving Eq. (5), the smaller problem

XTXψi = λiψi (11)

is solved. The problem is smaller since XTX ∈ Rm×m, and the number of snapshots m

is usually much smaller than the number of points. After solving Eq. (11), the original

POD modes are recovered [6] as

ϕi =Xψi
1√
λi

, i ⩽ m. (12)

and the rest of the reconstruction is completed using Eq. (6). Note that this method is

only able to extract at most m modes.

It is not generally the case that the POD modes correspond to physical patterns

that can be observed in the flow. Nevertheless, since POD modes are the eigenvectors

of the covariance matrix of the data, they measure how correlated values at points are

and capture zones of correlated points, meaning that they could represent a coherent

structure of the flow. Two POD modes can sometimes form a pair, where they together

describe one dynamic motion in the flow [12]. Since those two modes are orthogonal, the

spatial structure and the time coefficient of one of the modes is a shifted version of the

other by a quarter of a period. A reconstruction with two modes that form a pair can

capture a translating and alternating character of a flow pattern [13]. Pair modes will

create a circle when their time coefficients are plotted in a phase portrait, where the value

of one coefficient is on the x-axis and the other coefficient on the y-axis. This is because

a circle can be parameterised as (cos t, sin t) where t covers an interval of length at least

2π. Therefore, if the two time coefficients plot a circle for a given time interval, they are
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sine and cosine waves in that interval and are thus offset from each other by a quarter

period.

1.3 Modal Decomposition using Autoencoders

Deep learning is a technique within the field of artificial intelligence that uses large

amounts of data to learn, as opposed to using human-designed rules. In a deep neu-

ral network (DNN), several layers of artificial neural networks are used, each of which

interprets its input data differently [14]. An autoencoder (AE) is a DNN that has a struc-

ture useful for feature extraction [9]. An AE consists of an encoder, which maps the input

data to a low-dimensional space called the latent space, and a decoder, which receives

the data in the latent space as its input and maps it back into the original space. The

purpose of the AE is to reconstruct the input data while limiting the reconstruction loss.

By limiting the dimension of the latent space to some number d, the AE produces a

reconstruction that is as good as possible, using only d “features” from the input data.

This is the same idea that other techniques for reduced order modelling like POD use: to

model the flow using a limited number of features. The elements of the latent space are

therefore also modes, although they may not share the same properties as POD modes.

AE-based modes are not necessarily orthogonal, nor are they ranked by energy content

like POD modes. However, the modes obtained through the AE do not have to form a re-

construction as a linear sum like POD modes, a feature that may increase reconstruction

accuracy [9].

An efficient model for the autoencoder is obtained through training the network on

a part of the input data, called the training data. A snapshot from the training data is

passed through the layers of the encoder and decoder, each layer taking the output of the

previous layer as its input. The nodes of a given layer take inputs from the outputs of the

nodes of the previous layer, and with each connection between two nodes is associated a

weight that may amplify or reduce the strength of that connection. Additionally, there is a

bias associated with each node, changing the influence that the node has on the next layer.
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When an output reconstruction is produced, the loss is evaluated using some pre-specified

loss function, and the weights and biases are adjusted to try to reduce the loss. The

algorithm that does the adjustments is called the optimisation algorithm. One of the most

widely used optimisation algorithms is Adam [15], used for its computational efficiency,

low memory requirement, and straightforward implementation, among other properties

[16]. In addition to weights and biases influencing the output of a layer in the network,

activation functions can be used to further encourage behaviours in the performance of

the network. By using non-linear activation functions, networks are aided in learning

higher-order relations between variables [9, 17]. When the network has completed its

training, the training data, along with the part that was excluded during the training

called the validation data, are passed through the network, and the final performance of

the network is measured by the loss in the reconstructions of the data.

1.4 Aim of Study

The present study aims to perform and compare modal decomposition using POD and

autoencoders in a turbulent fluid flow by analysing the extracted features and quality of

reconstructions of the methods, as well as finding physical interpretations of low-number

modes generated by POD.

2 Method

The input data were obtained through Direct Numerical Simulation of the flow of a gas

mixture containing N2O4 and NO2 through a channel with a heated bottom wall, used

in a study by Zhang et al. [2]. The gas mixture is at chemical equilibrium, with the mass

fractions of the species being approximately 73% N2O4 and 22% NO2. There is also 5%

non-reacting N2 present. The gas mixture enters the chamber at a temperature of 303K,

and the bottom heated wall is at the temperature 404K. The temperature difference

makes the gas mixture react in the reversible endothermic-exothermic reaction N2O4 ⇌
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Figure 1: The x and y velocity components for all points at one time instance.

2NO2. The heated wall along with the chemical reactions contribute to a turbulent flow.

To reduce complexity in computations, a 2D slice of the channel was chosen as the input

data, so that the heated wall was along the x-axis. The data were formatted so that it

consisted of 886 snapshots, with 65536 points in a 256× 256 mesh in each snapshot. The

x and y velocities from one snapshot are shown in Figure 1. Snapshot POD was applied

on the x and y velocity data to extract modes with time coefficients. The original flow

was reconstructed using Eq. (1) for 2, 6, 12, and 20 modes. The autoencoder was run

with the dimensions of the latent space d = 2, 6, 12, and 20, and reconstructions of the

flow were obtained. Relevant hyperparameters for the AE are shown in Table 1, and its

structure is shown in Figure 2. In the first and third dense layers, the activation function

Rectified Linear Unit (ReLU), defined as

R(x) =

{
x if x ⩾ 0

0 if x < 0
(13)

is used. The autoencoder was trained to minimise the mean-square error in the recon-

struction, and the Adam optimisation algorithm was used to train the network. Values

for all three velocity components were obtained from both POD and the autoencoder,

but only the x and y components were chosen for analysis since they offered clearer

visualisation in the xy-plane used for the input.

Table 1: Hyperparameters used for the autoencoder.

Activation function Training rate Training snapshots Validation snapshots

ReLU 10−2 708 178
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Input

256× 256× 3

Flatten

196608

Dense

512

Dense

Latent
space

d

Up-
sample

512

Up-
sample

196608

Reshape
Output

256× 256× 3

Figure 2: Structure of the autoencoder. First, the encoder flattens the input before it is put
through a dense layer reducing the size to 512 using ReLU, followed by another dense layer
reducing the size to d: the size of the latent space. The decoder then scales up the data in two
analogous layers, using ReLU in the first one, before it is reshaped into the output reconstruction
of the flow.

3 Results

The results are split split into two parts. First, the structure of the POD modes with time

coefficients are presented. Then, the reconstructions using POD and the autoencoder are

displayed and compared.

3.1 Modes obtained using POD

The mean flow and the first two spatial modes for the x and y velocity components

are shown in Figure 3. Time coefficients for the first five modes are shown in Figure 4.

Observing that the time coefficients for modes 4 and 5 look offset by a quarter period

for some time intervals, it could be suggested that these modes form a pair. The phase

portrait of the two time coefficients for relevant time intervals are shown in Figure 5.

Intervals where the phase portrait formed a circle-like shape were chosen. In addition

to the two displayed intervals, the snapshot intervals 20-180 and 708-872 also displayed

circular shapes.
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(a) Mean vx (b) Mean vy

(c) Mode 1 vx (d) Mode 1 vy

(e) Mode 2 vx (f) Mode 2 vy

Figure 3: The mean flow and the first two spatial modes extracted from POD for the x and y
velocity components.

(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Modes 4 and 5

Figure 4: Time coefficients for modes 1 - 5 extracted using POD.
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(a) Snapshots 268-440 (b) Snapshots 440-572.

Figure 5: Phase portraits of the time coefficients for modes 4 and 5, in the snapshot intervals
268-440 and 440-572. The snapshot intervals 20-180 and 708-872 also displayed circular shapes.

Table 2: Percentage loss of x and y velocity components of the reconstructions from POD and
the Autoencoder using 2, 6, 12, and 20 modes.

2 modes 6 modes 12 modes 20 modes
POD vx 90.0% 75.3% 63.2% 52.2%
POD vy 97.5% 90.0% 83.0% 75.2%
AE vx 26.9% 21.1% 17.6% 17.1%
AE vy 48.8% 39.8% 33.6% 32.5%

3.2 Reconstructions using POD and the Autoencoder

After reconstructing the flow using both POD and the autoencoder, the loss was calcu-

lated using Eq. (10), with results in Table 2. In Figure 7, shown in Appendix B, the mean

flow has been removed from the reconstructions to more clearly see to what extent the

turbulent features of the flow are captured.

4 Discussion

Generally, a low number of POD modes were not able to capture significant portions

of the turbulent kinetic energy of the system. The flow was not structured enough for

common patterns seen in many other flows to appear. However, low-number POD modes

still contain some information about the structure of the flow close to the heated wall,

the main area of interest since it causes much of the turbulent flow. The autoencoder was

quite successful at recreating the flow, capturing many of the relevant structures already
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when using only 2 modes. POD did not recreate the flow as well, only capturing the

larger-scale structures even when using 20 modes.

4.1 Structures in POD modes

There is quite a symmetric mean flow for the x velocity component, whereas the mean

flow for the y-component is less structured (Figures 3a and 3b) as there is less physical

motivation for the gas moving in the y-direction in a structured manner. There is one

clear structure in the mean y-velocity: in the beginning of the channel, the gas that is

close to the bottom wall rises. This behaviour makes physical sense as the gas will rise

when it is exposed to the hot bottom wall. Additionally, the increased temperature of the

gas will favour the endothermic reaction, decomposing more N2O4 into 2 NO2, increasing

the number of molecules, thus forcing the gas away from the wall.

The first two POD modes both show alternating structures of high and low x-velocity

near the heated wall. However, these two modes do not form a pair, since only mode 1 has

a clear sinusoidal time coefficient, whereas mode 2 has a more complex and less predictable

time coefficient. Mode 1 captures a structure near the heated wall of an area with higher

x-velocity followed by an area of lower x-velocity, with the two areas oscillating in value

over time. The seemingly steady and repeatedly oscillating nature of this mode suggests

that it could be a pattern of the flow with physical interpretability.

No structures of interest were found for mode 3. However, Modes 4 and 5 have quite

complementary function, both displaying clear rectangular structures going from the bot-

tom wall to the top wall in y-velocity, and some smaller regions near the wall for x-velocity,

see Figure 6 in Appendix A. These structures are offset from each other, suggesting that

these modes could form a pair, capturing the same structure of the flow together. This is

further supported by the results of Figure 4d, showing that a4(t) in many time intervals

looks like a5(t), but shifted a quarter period. Further, the phase portrait of these two

modes form circular shapes for several time intervals as seen in Figure 5.

It must be noted that the structures observed in low-number modes are not necessarily
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representative of the entire structure of the flow since they capture so little of the total

turbulent kinetic energy of the system. Due to the weak structure of the flow, POD is

not very effective, and many modes are required for an accurate reconstruction. The

next section evaluates these reconstructions in comparison to those generated by the

autoencoder.

4.2 Comparison between POD and AE reconstructions

The autoencoder performed well in reconstructing the flow. Referring to Table 2, 73.1% of

the x-component of turbulent velocity was captured with d = 2, a good result in compar-

ison to the reconstruction with 2 POD modes that only captured 10.0% of the turbulent

x-velocity. Generally, the y component of the turbulent velocity was not captured by the

reconstructions to the same extent as the x component. This could be due to the presence

of a stronger mean flow in the x-direction, leaving less turbulent structures than for the

y velocity. The AE still outperformed POD in capturing this energy.

However, as the dimension of the latent space increased, the AE model did not improve

greatly, especially between using d = 12 and d = 20. This could be a consequence of

the network not training for long enough, thus not finding a way to use the additional

dimensions to create a more optimal model. Further increase in training efficiency could lie

in optimising the hyperparameters for the network, or to change the schematic structure

of the network.

Another flaw in this method lies in the individual AE modes not being isolated and

ranked by energy content like the POD modes were. Previous work has extracted modes

using AE-based models with success in making them orthogonal and interpretable. Still,

there is an ongoing task of constructing AE-based models that extract physically inter-

pretable modes from fluid flows, sharing some of the benefits of POD modes while being

able to improve on them and maintaining reconstruction efficiency.
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4.3 Conclusion

The data set used for this study did not display clear coherent structures like many

other turbulent fluid flows. Because of this, performing modal decomposition with Proper

Orthogonal Decomposition was not very effective, as even reconstructions with large

amounts of modes were not able to capture the smaller-scale turbulent structures of the

flow. However, some weak structures of the flow were identified using POD. Using an

autoencoder for feature extraction from the flow yielded more accurate reconstructions,

capturing some of the turbulent structures at smaller scales. Even though the autoencoder

was very successful in comparison to POD for a low number of modes used for the

reconstruction, it had some difficulty improving as more modes were added. This could

be improved by increasing training efficiency through optimisation of hyperparameters

and the structure of the neural network.
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A POD modes 3-5

(a) Mode 3 vx (b) Mode 3 vy

(c) Mode 4 vx (d) Mode 4 vy

(e) Mode 5 vx (f) Mode 5 vy

Figure 6: x and y velocity components for POD modes 3-5.
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B Reconstructions of the flow using the Autoencoder

and POD

(a) vx reference (b) vy reference

(c) vx for d = 2 (d) vy for d = 2

(e) vx for d = 6 (f) vy for d = 20

(g) vx with 20 POD modes (h) vy with 20 POD modes

Figure 7: Plots of reconstructions of the turbulent part of the flow using the autoencoder and
POD. Figures (a) and (b) show the input data for the x and y velocity components, respectively.
Figures (c)-(f) show reconstructions using different values of d, the dimension of the latent space.
Figures (g) and (h) show reconstructions using 20 POD modes.
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