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Abstract

Gravitational waves arise when a mass is accelerated and causes ripples in spacetime.

When gravitational waves travel between two points, they are affected by the evolving

matter they pass through. The differences in the received wave compared to the emitted

wave due to these gravitational effect are described by the Sachs-Wolfe and integrated

Sachs-Wolfe effects. This paper describes a method of computing these effects for a re-

alisation of the cosmic dark matter field. The method is applied to mock merger events

and dark matter fields to determine its reliability. Then, it is applied to data from the

GW200105 merger event and a reconstruction of the dark matter field based on galaxy

survey data from SDSS3/BOSS. The results show the increase in estimated chirp mass

due to these effects to be 0.001 29% or 4.684 503 8× 10−5M� for GW200105.
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1 Introduction

In 1916, Albert Einstein developed the General Theory of Relativity, which predicts the

existence of Gravitational Waves (GWs) [1]. GWs allow the study of black holes and

other parts of the Universe in a way electromagnetic waves do not [2]. GWs propagate at

the speed of light and contain information about their origins, but also about the large-

scale structures (LSS) they have interacted with [1, 3]. Since the large-scale structure

of the Universe affects the frequency, amplitude, and phase of GWs, there will also be

non-negligible impacts on the calculations of luminosity, frequency, and chirp mass of the

binary supermassive black holes emitting the GWs [3]. This paper will provide a first

estimate of the size of these effects.

1.1 Einstein’s Field Equations

Einstein’s field equations describe the relationship between spacetime and the distribu-

tion of mass [4]. Spacetime is the quantity for the physical distance between points, a

combination of the three dimensions of space and time [4, 5]. When a photon moves

through spacetime, it follows a geodesic, the shortest path between two points in four-

dimensional spacetime [5]. In Equation (1), the left side of the equality signifies the

warping of spacetime, while the right side is the mass distribution. Because mass and

energy are interchangeable, as E = mc2, T can also represent the energy distribution. [4]

This is also true for objects with a mass, which always warp spacetime [6].

Rµν −
1

2
gµνR =

8πG

c4
Tµν (1)

where Tµν is the stress-energy tensor, G is the gravitational constant, gµν is the metric

tensor, Rµν is the Ricci tensor and R is the Ricci scalar. [4]
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1.2 The Einsteinian and Newtonian Viewpoints

Gravity is the dominant force at cosmological scales, from about 100 Mpc. The electro-

static force is the only other force working at these distances, but as the Universe is

electrically neutral at these scales, the electrostatic force does not affect the evolution of

the Universe. In this Newtonian view, gravity is caused by massive objects pulling on each

other. However, the Einsteinian viewpoint assumes that gravity is simply an effect of the

curvature of spacetime. While Einstein and Newton imagined what was occurring very

differently, their equations give very similar results in all but what Einstein would call the

strongest curvatures in spacetime. In those situations, the Einsteinian general relativis-

tic model gives better results. When there are no deep warps in spacetime, Newtonian

physics, including Poisson’s equation (2), provide accurate solutions. [5]

∇2Φ = 4πGρ (2)

where Φ is the gravitational potential, ρ is the mass density, and G is the gravitational

constant. [5]

1.3 The Friedmann–Lemaître–Robertson–Walker Metric

The structure of the Universe can be described as planets orbiting stars located in galax-

ies. Galaxies in turn are part of clusters, which exist inside superclusters. Yet, the Uni-

verse is homogeneous and isotropic at scales larger than 100 Mpc. [7] Isotropic means that

whichever direction an observer would look, they would see roughly the same thing. Homo-

geneity implies that the observer can be in any location, and from that point it would still

be isotropic [5]. This is assumed in the Friedmann–Lemaître–Robertson–Walker (FLRW)

metric. The discovery of the cosmic microwave background (CMB) was major evidence

for this theory [7]. Equation (3) shows the FLRW metric in spherical coordinates [4].

ds2 = −c2dt2 + a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

]
(3)
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where ds is the difference in comoving distance, c is the speed of light, dt is the

difference in time, a(t) is the scale factor, k is the curvature constant and r, θ and φ are

spherical coordinates. [4]

1.4 The Friedmann Equations

The Friedmann equations were derived from Einstein’s field equations, using the FLRW

metric [8, 7]. They describe the expansion and/or contraction of the Universe [4]. This

is done using the scale factor, a(t), as a function of time, by relating a(t), k, R0 and

ε(t) [4, 5]. The curvature constant, k, describes if the curvature is positive, negative,

or flat. A flat space is one in which Euclidean geometry applies, for example meaning

that a straight line is always the shortest path between two points and that the universe

is infinite in size. In this case, k = 0. If the value of k is positive, space is spherical

and no longer described by Euclidean geometry. It is also finite in size. A hyperbolic, or

negatively curved, space also breaks Euclidean geometry, however, it is infinite in size,

like flat space [4]. The curvature radius is expressed as R0 and the energy density as ε(t)

[5]. The scale factor thus depends on the contents of the Universe. In accordance with

both observations and the first (4) and second (5) Friedmann equations, galaxies move

further apart at scales of tens of Mpc. Equation (4) describes how a(t) changes with time,

while Equation (5) describes the acceleration of a(t). If the cosmological constant, Λ, is

positive, it will act as a repulsive force and if the repulsive force is large enough, it will

overcome gravity and therefore cause an accelerating universe. [4]

(
ȧ

a

)2

=
8πG

3
ρ− kc2

a2
(4)

ä

a
= −4πG

3

(
ρ+

3p

c2

)
+

Λ

3
(5)

where G is the gravitational constant, c is the speed of light, ρ is the mass density, Λ

is the cosmological constant, k is the curvature constant, p is the pressure and ȧ and ä

are the first and second derivatives, respectively.
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1.5 ΛCDM

The Λ Cold Dark Matter (ΛCDM) model is the current standard model of cosmology.

It explains observations, such as the cosmic microwave background and the large-scale

structure of the Universe, using the general theory of relativity [9]. ΛCDM assumes that

the universe is homogeneous and isotropic [8]. To explain the accelerating expansion of

the universe, it includes a kind of energy called dark energy. It also contains a material

called cold dark matter, which only interacts through gravitation [10]. There also exists

radiation, relativistic particles and baryonic matter. Baryonic matter is thought to only

make up about 5 % of the total density, which would be approximately one fifth as

much as there is non-baryonic matter. It is the cosmological constant that makes up the

majority of the total density. The model also stipulates that the Universe is flat. While it

is impossible to prove that it is perfectly flat, no curvature has been detected. Using the

standard model, the Universe has been dated to about 14 billion years and is expected

to continue ageing and expanding forever, instead of recollapsing or being static. Using

all of these principles ΛCDM describes a possible past, current, and future evolution of

the Universe [8].

1.6 The Sachs-Wolfe effect

The Sachs-Wolfe (SW) effect describes the effect large-scale structures have on the energy,

or temperature, of photons. If the EM radiation is instead expressed as a wave, the SW

effect would change its frequency [3]. The integrated Sachs-Wolfe (iSW) effect is due to

the changes to gravitational anisotropies, more specifically, differences in gravitational

potential Φ, over time. The equation for the iSW effect is shown in Equation (6) [11].

Iisw =

∫ r

e

∂τΦdλ (6)

where ∂τ is the partial derivative according to proper time and λ is the affine parameter

describing the path between e and r. [11]
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When a photon enters a gravitational well, which has a lower gravitational potential,

its energy increases. This is shown as ∆EEntry in Figure 1. If the universe doesn’t expand

while the photon is traversing it, the photon will lose exactly as much energy when exiting

the gravitational well, shown as ∆EEntry = ∆EExit+∆E. In this first scenario, the photon

follows the black path. When the Universe is dominated by dark energy, the differences in

gravitational potential can change with time, leading to its flattening. The gravitational

potential after flattening is shown with a red line in Figure 1. When the gravitational

well flattens as a wave is traversing it, it may follow a path more similar to the blue wave,

thus gaining the energy ∆E = ∆EEntry−∆EExit. Similarily, a photon would instead lose

energy if it was traversing a flattening gravitational potential hill [11].

∆EEntry

∆EExit

∆E

Figure 1: A GW traversing a spacetime overdensity/well. The black line represents the
path of a GW before expansion and the red line is the path of a GW after expansion.
The blue wave depicts a GW traversing a flattening gravitational well and thus gaining
energy.

The Sachs-Wolfe effect can also be adapted for GWs, as they experience the Sachs-

Wolfe and integrated Sachs-Wolfe (iSW) effects too. The phase and frequency of GWs

are affected by the iSW effect similarly to CMB photons, allowing a similar use of the

effect for GWs. While the corresponding iSW effect will not impact the ability to detect

GWs, it does affect the resulting estimate for chirp mass, orbital frequency and luminosity

distance [3]. Luminosity distance is the distance an object appears to be at, based on the

intensity of the light. However, multiple factors, except for the inverse square law, cause

the received intensity, and therefore perceived distance to the source, to be offset. Among

these are the expansion of the Universe and redshift. The perceived distance will therefore

be larger than it actually is. Type 1a supernovae are used as guidelines for distance, as

the light they emit is always very similar [4]. The chirp mass is a specific combination of
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the two masses in a binary system [12].

1.7 Black Holes

Black holes form when stars with a mass of at least 3 solar masses collapse at the end of

their lives. Nothing, including light, can escape from black holes, as the escape velocity

needed is larger than the speed of light. Anything which enters the event horizon will

be pulled towards the centre, where a singularity is located, which warps spacetime to

infinity [7]. Black holes can also merge, which is when a binary system of two black holes

becomes one, more massive, black hole [13]. Some black holes classify as supermassive,

such as the one at the centre of our galaxy, with a mass of about 4.3 million solar masses

[7].

Binary systems of black holes provide a predictable source of GWs for waveform

modelling [9]. The large masses and accelerations involved in the merger of supermassive

black holes have allowed GWs to be detected [6]. When the orbits of these binary systems

decay, GWs are emitted, releasing some of their orbital energy [2]. The GWs may be

measurable multiple Gpc from the origin, when two large black holes with different masses

coalesce. These mergers, together with more sensitive equipment, will allow for studying

larger redshifts, corresponding to events further away and back in time. When a mass is

accelerated, it creates GWs, which grow with increasing mass and acceleration. When the

mass and acceleration are large enough, they will be measurable by current technology.

Thus, binary black holes, or neutron stars, during a merger represent the best candidates

for measuring GWs. The merger consists of three phases: inspiral, merger, and ringdown.

The inspiral phase is when the bodies in the binary system spiral in closer. This then

results in them merging into one body. The final stage of the merger is the ringdown,

when gravitational waves are emitted at a higher frequency as the black hole becomes

more stable [6].

A Doppler shift is the consequence of objects moving apart or towards each other. A

redshift is a Doppler shift caused by objects moving apart and can be used as a unit of
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time and expansion. A redshift of z = 1 indicates that the Universe has doubled in size

since that point in time [14]. The light of an object moving away from an observer causes

its spectrum to be shifted. z = λr
λe
− 1 expresses the redshift as a function of the received

wavelength λr and the emitted wavelength λe [7].

1.8 Observations of Gravitational Waves

While potential black hole candidates have repeatedly been found using electromagnetic

observations, it was not until 2015, nearly 100 years after Albert Einstein’s first prediction,

that a merger of two black holes was observed. The GWs from the event referred to as

GW150914 were consistent with expectations for an inspiral, merger and then ringdown

of two black holes. During the 0.2s of the event, the frequency increased from 35Hz to

150 Hz during 8 cycles, with a simultaneous increase in amplitude. [1]

To measure the small changes to spacetime caused by GWs, special detectors consist-

ing of two perpendicular, 4 km long, tunnels with mirrors are used. By projecting a laser,

which is then split into two beams, one for each tunnel, any large enough change to space-

time will affect the length of the tunnels and thereby also the phase difference of the laser

beams. To reduce the risk of interference, two separate detectors were built in different

locations to verify the results. Having multiple detectors also allows for approximating

the direction of origin for GWs. Multiple environmental sensors, such as magnetometers

and radio receivers, are also used to monitor the surrounding area for events that might

invalidate the results. [1]

This allowed the Laser Interferometer Gravitational-Wave Observatory (LIGO) de-

tectors to receive GW150914 in 2015 [1]. It was the difference between a precision of

2 × 10−23/
√

Hz and 8 × 10−24/
√

Hz that allowed the GWs to be detected [15]. Future

prospects for the measurement of gravitational waves include the Laser Interferometer

Space Antenna (LISA) which consists of 3 spacecraft forming a triangle with sides of 5

million km [16]. Another mission, called Euclid, aims to measure dark matter and dark

energy, while the Large Synoptic Survey Telescope (LSST) aims to map tens of billions
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of stars and galaxies [17, 18].

1.9 BORG Data

The reconstruction of the density field used in this paper is based on the Sloan Digital

Sky Survey III/Baryon Oscillation Spectroscopic Survey Data Release 12 [19]. Using

galaxy redshift data and models of gravitational structure formation, the Bayesian Origin

Reconstruction from Galaxies (BORG) algorithm models density fields. Gravitational

structure formation is when the gravitational effects attract matter, causing the mass, and

therefore gravitational force, to increase and in turn attract even more matter. Forward

modelling allows the algorithm to infer non-linear features and higher-order statistics in

density fields. For more information about the BORG algorithm, readers are referred to

the literature [20].

1.10 The Aim of the Study

This study examines the impacts of the Sachs-Wolfe effect and the integrated Sachs-

Wolfe effect on GWs, including from the neutron star-black hole binary GW observation

GW200105. It is based on Equations (6) and (7) described by Laguna et al. [3]. Simulating

the SW and iSW effects on GWs using BORG density field data is a novel application.

This study aims to find the difference in apparent chirp mass of a binary black hole

merger, known as χ = δM
Mz

= − δf
fz
, where a z index indicates redshifted values.

χ = Φ|re − ~n · ~v|re − Iisw (7)

where χ is the change to chirp mass ( δMMz
) or frequency (− δf

fz
), Φ|re is the difference in

gravitational potential, Iisw is the iSW effect and ~n · ~v|re is the Doppler correction.
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2 Method

The method presented below is used for three baseline tests and for one computation of

observational data, with only minor differences. These differences are described in the

corresponding subsections.

2.1 Outline of Algorithm

The method was based on a simulation, which generated a data cube of voxels containing

a density field. Next, the gravitational potential, Φ, of the data cube was computed from

the density field, with the help of a Fourier transform. The iSW effect was computed

in all voxels. Then, the locations of an observer r and a source of gravitational waves

e were specified. A line was drawn between e and r, along which a Riemann sum was

computed using tri-linear interpolation for a better approximation. A Riemann sum was

used instead of an integral because the data model was discrete.

Next, the Sachs-Wolfe effect was also calculated, using the difference in gravitational

potential between r and e. The difference in relative velocity, and thus the Doppler shift

correction, between e and r was assumed to be 0.

Using this information, χ = δM
Mz

= − δf
fz

was calculated, which was the effect of the

LSS on the GWs. The structure of the script is shown in Figure 2. Table 1 shows the

parameters used in the different tests and illustrations of the directions of the black hole

merger can be found in Appendix A.

Table 1: Method specifications. The rows represent the separate tests.

Ascension Declination dL Mz Cube/grid size

Zero density 30° −70° 1500 43 4000/128
Underdensity 30° −70° 1500 43 4000/128
Gaussian 30° −70° 1500 43 4000/128

BORG data 106.8018° 41.8359° 265.0966 3.619+0.006
−0.006 [21] 4000/256
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Start

Create data cube of voxels.

Load density field.

Compute Φ.

Calculate iSW effect in each voxel.

Place merger event e and observer r. Draw line between e and r.

Compute Riemann sum of
line using tri-linear interpolation.

Calculate SW effect.

Set Doppler shift = 0.

Calculate χ and δM.

Stop

Figure 2: A flowchart for the algorithm used to compute the SW and iSW effects.
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Slices of the density fields used are shown in Figure 3.

(a) A graph showing an empty toy mass
density field.

(b) A graph showing a toy mass density
field with a spherical underdensity.

(c) A graph showing a gaussian distributed
toy mass density field.

(d) A graph showing a BORG mass density
field.

Figure 3: Density fields for the different scenarios.

11



Figure 4 shows the data used for approximating the direction of the GW200105 merger

event.

Figure 4: A map showing the probability for different merger event directions.
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2.2 Baseline Test

A baseline test was performed to verify the results against expected values using known

density fields. The aim of the baseline test was to determine the reliability of the method.

Multiple mock density fields were tried, including:

1. An empty density field.

2. A density field with a spherical underdensity at about 1000 Mpc from the centre.

3. A Gaussian distributed density field.

The merger event location e, observer location r, chirp mass Mz and luminosity distance

dL were the same during all tests.

2.3 Observational Data

The observational data is from a data set provided by [22], which was inferred using

the BORG algorithm described in subsection 1.9. Information about the direction of the

selected merger event was retrieved from Beyestar data published by LIGO [23], while the

chirp mass, shown in table 1, was manually retrieved from a separate source describing

GW200105.

Figure 4 shows the probability for the different locations the gravitational wave may

have come from. The visualised data was processed as a part of the observational data.
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3 Results

Table 2 shows the resulting values from the baseline tests and the BORG simulation.

Table 2: Simulation results from density fields.

Empty Underdensity Gaussian BORG data

SW 0 −9.692 133 3× 10−4 −1.133 899 9× 10−5 1.348 252 2× 10−5

iSW 0 1.629 088 4× 10−4 4.409 767 2× 10−6 5.383 279 3× 10−7

χ 0 −1.132 122 2× 10−3 −1.574 876 7× 10−5 1.294 419 4× 10−5

δM (M�) 0 −4.868 125 3× 10−2 −6.771 969 6× 10−4 4.684 503 8× 10−5

The density fields shown in Figure 3 are slices of the density fields. Figure 3a shows that

the empty density field is zero at all points, while Figure 3b shows a spherical underdensity

at about half the distance to the edge of the dataset. The Gaussian distributed density

field is visualised in Figure 3c and the density field used in the observational data is

shown in Figure 3d.
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Figure 5 shows the integrated Sachs-Wolfe effect in all directions from the observer

to the same distance as the source. Figure 5a illustrates that there is no effect in any

direction, while the other three figures show varying iSW effects (non-zero values).

(a) Zero density field (b) Underdensity field

(c) Gaussian distributed density field (d) BORG density field

Figure 5: Maps showing the integrated Sachs-Wolfe effect for different density fields in
all directions to the distance of the black hole merger in all directions.
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4 Discussion

The baseline tests gave plausible results, thus contributing to the reliability of the results

from the observational data. The arguments for this conclusion are outlined in subsection

4.1.

4.1 Baseline Test

The results from the empty density field, visualised in Figure 3a, showed no SW nor iSW

effect. This follows expectations, as no gravitational perturbations were modelled, as can

be seen in Figure 5a. Thus, δM was also zero. As the SW and iSW effects are caused by

changes to spacetime perturbations, which are in turn caused by changes in mass, these

results are in favor of the model.

The spherical underdensity field showed a negative SW effect, but a positive iSW

effect. This caused a negative χ, which contributed a decrease of about 0.113% to the

received chirp mass and an increase to the wavelength by the same percentage. These

results also follow expectations, as an underdensity causes a gravitational hill, which in

turn causes the gravitational wave to lose energy in a model adhering to ΛCDM. The

decrease in mass was approximately 0.0487 M�. The results from the Gaussian distributed

field showed a negative SW effect and a positive iSW effect, resulting in a negative χ.

The decrease in received chirp mass would thus be about 0.00157%, or 6.77× 10−4 M�.

In a perfectly spherical underdensity field the SW and iSW effects would be expected

to be constant to all points outside the sphere. However, Figure 5b shows a difference in

the iSW effect depending on the direction. This is likely caused by the underdensity field

not being a perfect sphere. Instead, it is made up of cubic voxels. Depending on if the line

between e and r passes through a voxel perpendicularly or at a 45° angle, the length of

the intersection with the underdensity will vary. A higher-resolution density field would

be expected to reduce its effect, however, a spherical coordinate system would have to be

implemented to fully eliminate this effect, as opposed to the Cartesian coordinate system
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used in the simulation.

4.2 Observational Data

As the method passed the baseline test, an analysis of the observational data can be

carried out. For the observational data, the results showed a positive SW effect and a

positive iSW effect. This resulted in a positive value for χ, which would cause an increase

in received chirp mass of about 0.00129%, or 4.68× 10−5 M�, and a decrease in the

frequency of the same percentage.

This study did not take into account anything except the line of sight BORG data.

Other cosmological phenomenon, such as gravitational lensing, were ignored. The BORG

data also does not include baryonic matter, which likely affected the properties of the

GWs received by LIGO. The Doppler shift due to a difference in the peculiar velocities

was assumed to be 0, which is likely inaccurate. An improved model would have to take

into account this Doppler shift to provide more accurate results. This could be examined

in a future study.

The value for the difference in received chirp mass of 4.68× 10−5 M� is smaller than

the uncertainty in the estimated chirp mass by about 100 times. Thus, the real-world

applications of these results are very limited. When new instruments in the future provide

more accurate data, calculating these effects may prove valuable.

Next-generation telescopes will improve the data and understanding necessary to make

these estimations. Euclid aims to explore the dark energy responsible for the accelerating

expansion of the universe. The Rubin Observatory’s Legacy Survey of Space and Time

will study billions of stars and galaxies, which has the potential to improve the data

the BORG algorithm uses. The Laser Interferometer Space Antenna (LISA) is a laser

interferometer, like LIGO, but located in space. Instead of the 4 km long tunnels at

LIGO, LISA will consist of three separate spacecraft with millions of kilometres between

them. This more accurate data would likely allow for more accurate estimations of the

properties of merger events, such as the chirp mass, but also the SW and iSW effects.
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4.3 Conclusion

The plausibility of the results presented in this paper is very hard to establish, as this is

the first study to provide an estimate of the impact of the Sachs-Wolfe and the integrated

Sachs-Wolfe effects on gravitational waves for different realisations of the density field.

The results showed an increase in chirp mass of 0.00129% or 4.68× 10−5 M�. If these

results are accurate, their small effects compared to the uncertainty in the detector-frame

chirp mass make them negligible in estimations of the chirp mass.
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A Directions of the signals

Figure 6-9 show the direction of the black hole merger e as seen by the observer at r.

They are marked with red dots on the maps and are identical in figure 6-8.

Figure 6: A map showing the direction of a toy black hole merger (shown in red).

Figure 7: A map showing the direction of a toy black hole merger (shown in red).
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Figure 8: A map showing the direction of a toy black hole merger (shown in red).

Figure 9: A map showing the direction of the GW200105 black hole merger (shown in
red).
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