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Abstract

High-dimensional data is ubiquitous is Computational Fluid Dynamics and many other

fields of science, presenting unique difficulties in analysis, due to phenomena known as

the “curse of dimensionality”, the visual way in which humans interpret data, and the

complex relationships found in high-dimensional data sets. To address these issues, a novel

workflow based on modern data-driven algorithms was developed by Rovira et al. [1]. In

the present work, this workflow is applied to a new reactive flow data set from a study by

Zhang et al. [2], and its performance, applicability, and consistency over the time evolution

of the system is evaluated. The workflow was used to automatically identify and describe

clusters of data with similar physical properties in a logical, explainable and useful way. It

was found to be consistent, simple to understand and apply, and potentially adaptable to

a wide range of use cases. The various results obtained using the workflow are analysed,

and certain special cases and limitations are discussed. New possible applications of the

workflow and future research directions are proposed.
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1 Introduction

Computer simulations generating large amounts of data are common in both scientific

research and industrial applications [3]. They allow researchers and engineers to be less

reliant on experimental testing, reducing cost and complexity of research. One field to

which numerical simulation is fundamental is Computational Fluid Dynamics (CFD),

where computer simulations are employed to better understand fluid flow. [4]

1.1 High-Dimensional Data in Computational Fluid Dynamics

CFD simulations often produce a large number of data points in many degrees of freedom.

Degrees of freedom refers to the number of independent features each point is described

by, the variables of each point, or in other words the number of measurable quantities

each data point in a data set contains. These variables can be viewed as coordinates

in a space the dimension of which is the number of variables. For example, in a three

dimensional space each point can be described by three coordinates, or variables, while in

a 20 dimensional space 20 variables are required. In CFD, such variables typically include

the velocity of the fluid at each point, density, temperature, and chemical composition

of the fluid, as well as other features specific to each simulation. Typical CFD data sets

contain millions of data points in tens or sometimes hundreds of dimensions. Such high-

dimensional data sets, while containing a lot of information about the simulated systems,

are difficult to analyse. [5]

Humans rely primarily on visual aids such as plots and diagrams to identify relation-

ships in data, which limits us to analysing two or three variables at a time. The number

of plots required to find relationships between a higher number of variables makes this

method of analysis infeasible for high-dimensional data. Data analysis, even by non-

manual methods, is further complicated by the the complexity of phenomena involved

in fluid flow, such as turbulence, which are not generally well-understood. Additionally,

CFD data sets commonly exhibit complex, non-linear correlations between many vari-
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ables [6]. This limits the use of techniques for analysing high-dimensional data such as

Principal Component Analysis, PCA, which relies on matrix multiplication and can thus

only capture linear relationships.

A multi-step workflow aiming to overcome these problems, proposed by Fooladgar and

Duwig [5], involves dimensionality reduction, clustering, and feature correlation. These

methods aim to extract the key features of data for easier visualisation, or as input for

further analysis. This workflow was further developed by Rovira, Engvall, and Duwig [1],

utilising more modern algorithms and machine-learning models. The method employs

the Uniform Manifold Approximation and Projection for Dimension Reduction (UMAP)

algorithm for dimensionality reduction, Hierarchical Density-Based Spatial Clustering of

Applications with Noise (HDBSCAN) for clustering, and Mutual Information (MI) for

feature correlation. The workflow is visualised in Figure 1.

1.2 Dimensionality Reduction

Dimensionality reduction is a family of methods for embedding a high-dimensional data

set into usually two or three dimensions such that similar and dissimilar points are repre-

sented by nearby and distant points, respectively. In other words, dimensionality reduc-

tion methods aim to reduce the number of dimensions of a data set while preserving the

structure and relationships between data points. There are two main reasons for doing

this. Firstly, it presents the data in a lower dimensional form which can be analysed

manually. Secondly, it is a method to structure the data as input for other analysis steps.

Many data analysis methods suffer from difficulties in high-dimensional spaces [7]. This is

particularily noticable in clustering, described in section 1.3. These phenomena are often

referred to as the “curse of dimensionality“. As dimensionality increases the volume of the

space, and thus the number of points needed to maintain density, increases exponentially.

In many degrees of freedom even large data sets appear sparse and distinction between

dissimilar and similar points diminishes. Embedding the data into a lower dimensional

space allows similarities and differences between points to be more apparent.
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Figure 1: Flowchart of workflow proposed by Rovira et al. [1], from the original paper.
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Dimensionality reduction aims to reduce high-dimensional data into groups of simi-

lar points. This is helpful in finding areas in the data with similar physical properties.

However, dimensionality reduction by it self does not identify such groups. Additionally,

coordinates of each point in the lower-dimensional embedding, commonly called “synthetic

variables”, hold no physical significance, unlike variables in the original high-dimensional

space. Identification of the physical properties of groups in the embedding thus requires

add the back original variables to the dimensionality reduced data, adding back complex-

ity into the analysis [1]. These problems are dealt with in the next steps of the workflow,

in which clusters of similar points in the embedded data are identified, and the synthetic

variables are correlated with the original variables for each cluster.

1.3 Clustering

Clustering algorithms classify data into groups of similar points, called clusters. A simple

example of clustering is shown in Figure 2. When applied to CFD data sets, the aim

of these algorithms is to identify regions of points with similar physical properties and

processes. While humans could potentially identify similar regions in high-dimensional

data embedded into lower-dimensional spaces themselves, clustering algorithms automate

this process, allowing for analysis of large quantities of data. Additionally, in complex data

sets the separation between distinct groups is often not clear-cut. Clustering algorithms

can often identify patterns and relationships that are hard for humans to notice, while

providing clear, mathematically substantiated motivation.

1.4 Feature Correlation

The remaining problem, solved by feature correlation, is that the physical properties of

the clusters still have not been identified. Feature correlation refers to correlating the

synthetic variables of the embedding with the variables of the original data set, to key

features and common properties of each cluster. The results obtained from this step and
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Figure 2: Pseudo-randomly generated points in a two dimensional space clustered into
three distinct groups using HDBSCAN.

their interpretation varies with the exact algorithm and method employed. Examples

of methods or algorithms for feature correlation include linear correlation and mutual

information, the latter of which is used in the workflow of Rovira et al. [1].

1.5 Aim of Study

The workflow proposed by Rovira et al. [1] can potentially be used for gaining under-

standing of physical systems as well as explain them by classifying complex data into

regions of distinct, simpler physics. It is presented as general and applicable to a wide

range of problems in CFD, and potentially other fields.

In the present work, it has been applied to a more complex reactive flow data set
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from a study by Zhang et al. [2], to test its applicability to a wider range of data sets.

The performance of the algorithms on this new data set is evaluated and compared to

that shown in the work by Rovira et al. [1]. The consistency of the results over the time

evolution of the system is also examined. The workflow has previously been applied only

on data from a single time instance of a simulation.

The data set used comes from a simulation of N2O4 gas flowing through a channel

with a hot section of the bottom wall. As it passes the hot wall, the gas decomposes in the

reversible reaction N2O4 −−⇀↽−− 2 NO2, absorbing heat as chemical energy. Away from the

wall, NO2 reacts back into N2O4, releasing heat. How this process affects heat transfer

away from the hot wall was investigated by Zhang et al. [2]. A possible application is in

industrial cooling solutions. A snapshot from the simulation is shown in Figure 3.

(a) Coloured by XN2O4

(b) Coloured by Q̇

Figure 3: Snapshot 258/866 of the simulation coloured by N2O4 mass fraction (a) and Q̇
(heat release) (b). Note the band of very low heat release (high heat absorption) along
the hot section of the bottom wall.
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2 Method

The data used in the present work consists of 866 time instances (“snapshots”) taken 1.5

seconds apart, of a 2D slice of the original 3D simulation by Zhang et al. [2]. The data is

described in more detail in Section 2.1. Each slice was first pre-processed as described in

Section 2.2, and each step of the workflow was applied as described in Sections 2.3 to 2.5.

The clusters were also mapped back onto the original mesh. The implementation of the

workflow used in the present work1 was done in Python and based on that of Rovira

et al. [1]2, with some modifications3 being made to the original source code for extended

functionality and optimisation, without changes to the algorithms themselves.

2.1 Description of Data Set

The original simulation was a Direct Numerical Simulation, meaning that the governing

equations, the Navier-Stokes equations, were numerically solved at every scale. This is

in contrast to the paper by Rovira et al. [1], where the workflow is tested on data from

an LES simulation, where turbulence modelling is used in place of directly solving the

governing equations for the smallest scales. In the simulation, a gas mixture of 5% (by

mass) inert N2 and N2O4 and NO2 at chemical equilibrium, that is with mass fractions

of approximately 73% and 22%, respectively, enters the chamber at a temperature of

303 K (30.85 ◦C). A section of the bottom wall with a temperature of 404 K (130.85

◦C) heats the gas, which causes the decomposition of N2O4 into NO2, an endothermic

reaction absorbing heat. As the gas mixes, NO2 recombines back into N2O4 in areas with

sufficiently low temperature, releasing heat. Each snapshot consisted of 70416 cells in

a polygonal mesh, with 49409 points. As the snapshots were 2D slices, the cells were

triangular. Unlike the original implementation of the workflow, the mesh has not been

resampled onto a uniform one, and there was a higher number of cells close to the top
1Source code available at https://github.com/Armadillan/rays
2Original source code available at https://github.com/marrov/keyfi
3Modified source code available at https://github.com/Armadillan/keyfi

7

https://github.com/Armadillan/rays
https://github.com/marrov/keyfi
https://github.com/Armadillan/keyfi


and bottom walls of the channel. Each point held information about the mass fractions

of each chemical species, velocity along each axis, temperature, density, and heat release.

The dimensions and symbols for these are presented in Table 1. For more details on the

simulation setup, refer to the original work by Zhang et al. [2].

Table 1: Variables in the data set with units and symbols.

Variable Mass fraction Velocity Density Temperature Heat ReleaseN2O4 NO2 N2 x y z

Symbol XN2O4 XNO2 XN2 Ux Uy Uz ρ T Q̇
Unit dimensionless ms−1 kgm−3 K Wm−3

The heat release variable, Q̇, can be understood as the net energy released from

chemical reactions within a cell per unit time, per unit volume of the cell. Because the

value is normalised by the cell volume, values can be compared between cells in a non-

uniform grid. If the reactions within a cell are primarily endothermic, where more energy

is absorbed than released, Q̇ is negative. It is defined by the equation

Q̇ =

Nsp∑
k=1

h0
f,kω̇k, (1)

where Nsp is the number of chemical species, ω̇k is the rate of production of the kth species

for every volume unit of a cell, which is negative if the species is consumed by chemical

reactions, and hf,k is the enthalpy of formation for the kth species. In words, Q̇ is the sum

of the rates of production of each species multiplied by the energy released per unit mass

of produced substance, that is, the net energy released into the environment, as heat, of

all the chemical reactions happening in a given cell.

2.2 Pre-Pocessing

The input data was pre-processed by removing certain variables, clipping Q̇, and scaling

the variables. The variables removed were Uz, XN2 , XNO2 , and ρ. These variables were

added back before the feature correlation step.
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2.2.1 Dropping Variables

The rationale for the removal of XN2 was that it is inert and does not participate in

any chemical reactions in the fluid. It is not an interesting variable to analyse, and the

variations in this variable are very small throughout all of the data. Including this variable

would essentially be introducing noise, and could make it harder for the algorithms to

find correlations between other variables.

The reason for not including XNO2 and ρ was that they have a direct and easily

understood correlation with XN2O4 . Because XN2O4 and XNO2 are fractions of the total

mass, and XN2 stays practically constant, with a value of 0.05, they are related by 0.95 =

XN2O4 + XNO2 . Pressure is practically constant throughout the simulation, and thus ρ

is dependent only on the mass fractions of N2O4 and NO2, and the relative mass of

these molecules. The only information added into the system by including ρ would be the

relative mass of N2O4 and NO2, which should not have much influence on the chemical

and physical processes simulated. Because all of these three variables hold essentially the

same information, which is visualised in Figure 4, only one was included. The variable to

be included was arbitrarily chosen to be N2O4.

The reason Uz was dropped was that another dimension of velocity does not contribute

a lot of useful information, given that the data is a 2D slice of the simulation. The

workflow will not be able to identify 3D structures in the fluid flow anyway, because

that information does not exist in 2D data. Including Uz is therefore unlikely to reveal

any patterns or relationships that the information contained in Ux and Uy would not.

Dropping Uz likely removes more noise than information from the data.

2.2.2 Clipping Q̇

Q̇ was clipped to the range [−300, 300]. Because the mesh is coarse the exact differences

in this variable between cells with very high or very low heat release are not meaningful.

Because the cells are so large, cells with very high heat release do not necessary correspond

to points with very high heat release, but to general areas with high heat release, or
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(a) Coloured by XN2O4 .

(b) Coloured by XNO2

(c) Coloured by ρ.

Figure 4: Snapshot 258/866 of the simulation coloured by XN2O2 (a), XNO2 (b), and ρ
(c).
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possibly areas with single points of very high heat release. Above and below a certain

threshold, the heat release gradient between cells is not not of interest anymore, as a cell

with very high heat release and one with maybe even many times that contain essentially

the same information. A suitable range to clip Q̇ was chosen by analysing the distribution

of this variable. The distribution before and after clipping can be seen in Figure 5.

(a) Not clipped. (b) Clipped to [-300, 300].

Figure 5: Histograms of Q̇ values in snapshot 73/866 before (a) and after (b) clipping to
[-300, 300].

The aim was that every cell above or below the range should contain the same informa-

tion, that is "very high" or "very low" heat release, respectively, but that the distribution

of heat release values above 0 remained clear and distinct from the data at the edges of

the distribution, as this data could potentially hold interesting information about the

boundaries between areas of very high and very low heat release, and the heat release

gradient at the edges of the reacting region close to the bottom wall.

2.2.3 Scaling Data

The data was scaled by dividing by the maximum absolute value. The original workflow

as implemented by Rovira et al. [1] scales the input data by subtracting the mean and

dividing by the standard deviation. It was found that, for this particular data set, divid-

ing by the absolute maximum value results in more distinct clusters. Temperature, heat
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release and N2O4 mass fraction were scaled independently, while Ux and Uy were scaled

together, that is, each value of those two variables was divided by the maximum absolute

value in both variables. This was done to preserve the relative magnitudes of the velocity

components, and the overall velocity vector (as projected to 2D by dropping Uz). Scaling

Ux and Uy separately gives too much significance to the much smaller y component, the

maximum value of which was an order of magnitude smaller than that of Ux, and whose

mean was around three orders of magnitude smaller. When scaled separately, the dimen-

sionality reduction using UMAP would produce hard to cluster “jellyfish" embeddings,

an example of which can be seen in Figure 6.

Figure 6: UMAP embedding of snapshot 73/866, with Ux and Uy scaled separately,
coloured by Uy.

2.3 UMAP

After preparing the input data, each snapshot is passed to UMAP, for embedding the

data into a 2D space. It should be noted that the physical coordinates of each point in

the 3D space of the simulation are not included in the input data. The data at this point

has 5 dimensions: temperature, heat release, mass fraction of N2O4, and velocity along

the x and y axes.

UMAP is a non-linear neighbour-graph type dimensionality-reduction algorithm used
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based on fuzzy topology, developed by McInnes et al. [8]. It is not limited to any one type

of data, and has, in addition to its use in CFD, been successfully applied in data mining

and bioinformatics [9]. In broad terms, it works by creating a graph linking nearby points

in the data set, and embedding this graph into a lower dimensional space, preserving

information about the distances between points, the structure of the data. The work of

Rovira et al. [1] gives a broader overview of this algorithm, and for an explanation of the

mathematical backing of this algorithm, the reader is referred to the original paper by

McInnes et al. [8].

Dimensionality reduction algorithms generally strive to preserve the global and local

structure of the data. Local structure refers to the distances between each point and

its closest neighbours, while global structure refers to the distances between each point

and the points farthest from it. Preserving local structure can be understood as that

dissimilar points in the original data set are not represented as similar in the embedding,

while preserving global structure is in rough terms that similar points in the original data

is not represented by dissimilar points in the embedding.

In contrast to simpler techniques like PCA or matrix factorisation, UMAP is not

limited to capturing linear relationships in the data, and can potentially preserve any

type of correlation of the original data in the embedding. It has also been shown to be

better than other non-linear machine-learning algorithms like t-SNE, which was used

in the work by Zhang et al. [2], at preserving the global structure of the original data.

The dissimilarities between points in embeddings created by UMAP are generally more

meaningful than with t-SNE, twhere dissimilar points in the embedding are more likely

to be dissimilar in the higher-dimensional original data.

It should also be noted that, as mentioned in the introduction (Section 1.2), the

coordinates of each point in the lower dimensional embedding, the “synthetic variables”,

are not indicative of any of the properties of the original points. These values are assigned

to each point by the algorithm in a way that preserves the distances between points, but

not necessarily any other information about their position in the high-dimensional space,
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such as in which dimensions they are different.

The main hyperparameters in UMAP are the number of neighbours and the minimum

distance between points. The number of neighbours dictates how many points will be

considered for comparison with each point in the high-dimensional space. It controls the

balance between preserving global and local structure. A high number of neighbours will

generally retain more of the global structure in the embedding, while lower values will

prioritise local structure. The minimum distance parameter defines the minimum distance

between points in the embedding. Lower values will result in more tightly packed clusters.

Rovira et al. [1] recommend setting the number of neighbours to
√
N where N is the

number of points in the data set, and the minimum distance to 0.1. After trialling a

range of hyperparameters on a subset of the data, values of 250 and 0.1 were chosen.

These values generated distinct and relatively tight clusters that seemed to correspond to

points with similar physical properties. All 866 runs of UMAP, on every snapshot, were

initialised using the same random state seed, to minimise the influence of the stochastic

components of the algorithm. An example embedding using these hyperparameters is

shown in Figure 7.

2.4 HDBSCAN

The embeddings were then passed to HDBSCAN, which identified clusters of points in

the lower-dimensional data. HDBSCAN, Hierarchical Density-Based Spatial Clustering

of Applications with Noise, is a hierarchical clustering algorithm, meaning that the clus-

ters identified are ordered in a hierarchical structure, with large clusters subdivided into

smaller ones. HDBSCAN can therefore both cluster data into a smaller number of large

clusters, or a higher number or small clusters. An example HDBSCAN clustering of a

snapshot from the data set can be seen in Figure 8. HDBSCAN is able to classify data

as noise, and does this by assigning it to a cluster with the label -1.

HDBSCAN was developed by Campello et al. [10]. The implementation used by Rovira

et al. [1], and therefore in the present work, is that by McInnes and Healy [11], which has
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Figure 7: UMAP embedding of data points from snapshot 258/866, using 250 for the
number of neighbours and 0.1 for minimum distance, coloured by Q̇.

improved computational performance. For a more technical overview of the algorithm,

and the mathematical motivations behind it, the reader is referred to these papers.

The main hyperparameters of HDBSCAN are the minimum cluster size and the min-

imum samples. Minimum cluster size is the minimum number of points that can be

considered one cluster, while the minimum samples has to do with how HDBSCAN han-

dles noise. Lower values will make the algorithm more “cautious”, resulting in more data

points being classified as noise and not included in any cluster. The values chosen for these

parameters in the present study were 300 for minimum cluster size and 10 for minimum

samples.

2.5 Mutual Information

So far in the workflow, clusters of similar points in the original data have been identified.

The last step uses Mutual Information, for learning how the points in each cluster are

similar. This algorithm is used to correlate the synthetic variables of points in each

15



Figure 8: An HDBSCAN clustering of UMAP embedded data from snapshot 258/866,
using a minimum cluster size of 300 and minimum samples of 10. Cluster -1 is noise as
identified by HDBSCAN.
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cluster to their variables in the original high-dimensional space. Here, all of the original

variables are correlated with the synthetic variables, not only the five that were used

for dimensionality reduction. Throughout this workflow, only non-linear methods were

employed, meaning that any type of relationship between the variables of the data set

should have been possible to preserve. It is therefore important that the algorithm used

for the feature correlation step does not only find linear relationships, as it is known

that other types of relationships can exist in the data. Mutual Information quantifies the

amount of information learned about one variable by studying another, and can therefore

be used to measure any type of dependency between two variables.

The concept of Mutual Information was first introduced by Shannon in A Mathemat-

ical Theory of Communication [12], the founding work of the field of information theory.

It became widely used as a way to describe features of and correlations within a data set

after a paper by Battiti [13].

2.6 Mapping the clusters back onto the original mesh

It can be interesting to see where the clusters of points identified by the workflow exist

in the two-dimensional physical space of the original slice of the simulation (for each

cluster). To this end, the original mesh was updated with labels for each point based on

which cluster it was placed in by HDBSCAN. A snapshot coloured by cluster is shown in

Figure 9.

Figure 9: Embedding of snapshot 258/866 coloured by HDBSCAN clusters. Cluster -1 is
noise as identified by HDBSCAN.
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3 Results

Overall, the steps of the workflow successfully identified regions in the data with similar

physical characteristics. In a majority of snapshots, two main clusters were identified in

the embedding, like in the example in Figure 10. Mapping these clusters back onto the

Figure 10: UMAP embedding of snapshot 22/866, coloured by clusters found by HDB-
SCAN. Cluster −1 is noise as identified by HDBSCAN. The axes have no labels, as the
coordinates of each point in the embedding, the “synthetic variables”, hold no physical
meaning.

original data, as seen in Figure 11, it can be seen that the two main identified areas are

the main flow and the turbulent area close to the hot bottom wall.

The Mutual Information scores, which are shown for clusters 0 and 1 in this snapshot

in Figure 12, suggest physical properties that can be expected of these regions. Cluster

0 shows a lot of variation in Q̇, ρ, XN2O4 , and XNO2 , and some variation in velocity,

18



Figure 11: Clusters identified in the embedding of snapshot 22/866, mapped back onto
the original data. Cluster −1 is noise as identified by HDBSCAN.

(a) Cluster 0. (b) Cluster 1.

Figure 12: MI scores for clusters 0 (a) and 1 (b) in snapshot 22/866. Shown are MI scores
between each variable in the data set and each of the two synthetic variables (UMAP x-
and y-axes).
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particularly along the x-axis. This suggest that many chemical reactions are happening

there, because of the large variation in chemical species, density, and Q̇. It also suggest

some mixing and turbulence, given the variations in velocity. In contrast, cluster 1 shows

little variation in variables other than Ux, which suggests that not a lot of chemical

processes are taking place here. The large variation in Ux is likely due to differences

between slower moving fluid along the walls and the main flow in the middle of the

channel. This will be discussed further in Section 3.3.

3.1 Finer Detail in Reacting Region

In some snapshots, some finer detail was identified in the reacting region, as seen in

Figure 13. The clusters here correspond primarily to areas of very high and very low heat

release, which can be seen in Figure 14. The MI scores for a selection of clusters in this

snapshot are shown in 15.

3.2 Cases with Many Small Clusters

In a small number of snapshots, HDBSCAN divided the embedding into around 30 clus-

ters. An example of this is shown in Figure 16.

3.3 Nearly-Distinct Clusters: Manual Labelling

Some embeddings looked as if the main flow cluster was splitting into multiple smaller

clusters, like the one shown in Figure 17. A dendrogram showing the hierarchical rela-

tionship between possible clustering of this embedding is shown in Figure 18. These areas

were manually marked as separate clusters, shown in Figure 19.

When mapped back onto the original mesh, shown in Figure 20, the clusters seem

to correspond to areas of slower, more turbulent flow along the walls, and areas of high

velocity in the main flow.

The MI Scores for the manually selected clusters are shown in Figure 21. Some em-
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Figure 13: UMAP embedding of snapshot 84/866, coloured by clusters found by HDB-
SCAN. Cluster −1 is noise as identified by HDBSCAN. The axes have no labels, as the
coordinates of each point in the embedding, the “synthetic variables“, hold no physical
meaning.
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(a) Coloured by HDBSCAN clusters.

(b) Coloured by Q̇

Figure 14: Snapshot 84/866 of the simulation coloured by HDBSCAN clusters (a) and Q̇
(b).

beddings exhibiting this phenomenon also showed more detail in the reacting region, like

the one shown in Figure 22.

3.4 Performance over time

The results are relatively consistent over time, identifying areas of roughly the same

physical properties in most snapshots. The occurrence of each type of result described

above is somewhat evenly distributed among the 866 snapshots. The clustering follows

the time evolution of the system well.
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(a) Cluster 1. (b) Cluster 2.

(c) Cluster 4. (d) Cluster 8.

Figure 15: MI scores for clusters 1 (a), 2 (b), 4 (c), and 8 (d) in snapshot 84/866. Shown
are MI scores between each variable in the data set and each of the two synthetic variables
(UMAP x- and y-axes).
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(a) Embedding coloured by clusters. Because of the high number of clusters (28), a legend does
not fit in the figure.

(b) Snapshot coloured by clusters.

Figure 16: Clusters identified by HDBSCAN in the UMAP embedding of snapshot
556/866 (a), and mapped onto the original mesh (b).
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Figure 17: Clusters identified in the embedding of snapshot 73/866.

Figure 18: Dendrogram showing the hierarchical relationships betwen possible clusterings
of data from snapshot 73/866. Clusters 0 and 1 as chosen by HDBSCAN are highlighted.
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Figure 19: The embedding of snapshot 73/866, with clusters 2 and 3 manually selected.
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(a) Coloured by clusters, where 2 and 3 were manually selected.

(b) Coloured by Ux.

Figure 20: The manually selected clusters 2 and 3 mapped onto the original mesh of
snapshot 73/866, together with the rest of the labels created by HDBSCAN (a), and the
same snapshot coloured by Ux (b). Clusters 2 and 3 were part of cluster 1 in the original
HDBSCAN clustering.

(a) Cluster 2. (b) Cluster 3.

Figure 21: MI scores for the manually selected clusters 2 (a) and 3 (b) in snapshot 22/866.
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(a) Embedding coloured by clusters, where 5 and 6 were manually selected.

(b) Snapshot coloured by clusters, where 5 and 6 were manually selected.

(c) Snapshot coloured by Ux.

Figure 22: The embedding of snapshot 9/866, with manually selected clusters 5 and 6,
coloured by cluster (a), mapped onto the original mesh, together with the rest of the
labels created by HDBSCAN (b), and the same snapshot coloured by Ux (c). Clusters 5
and 6 were part of cluster 0 in the original HDBSCAN clustering.
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4 Discussion

The workflow proposed by Rovira et al. [1], as implemented in the present work, has

successfully identified regions of similar physical properties and processes. It was rela-

tively simple to understand, implement and adapt. The results obtained suggest that the

workflow is useful for automatically detecting boundaries between regions in the simula-

tion, identifying similar points at both large and small scales, and describing the defining

features of each identified region. In essence, the workflow can be used to reduce the

complex problem of understanding relationships between variables in a high-dimensional

data set to several simpler problems, by reducing the data to regions of simpler physics.

Additionally, the same general regions in the data, a region of main flow and a reacting

region, were identified over most of the time evolution of the simulation. The phenomenon

of clusters visually splitting into three parts corresponding to regions of different physi-

cal properties in the simulation, explained in Section 3.3 and Figures 17 to 22, is likely

related to the low number of cells in the data set used in the present work. As a den-

sity based clustering algorithm, HDBSCAN needs enough data to identify and separate

dense areas into different clusters. [10]. If there is not enough data the clusters will not

be dense enough to be clearly separable. It is possible that with a finer mesh the data set

would have enough points for these areas to be dense enough to be recognised as separate

clusters by HDBSCAN. A greater number of points might yield better results with this

workflow when applied on any data set, but comes at the cost of greater compute time.

The balance likely has to be determined for each use case.

4.1 Possible Applications and Future Research

In addition to those mentioned in the original paper, several possible applications of this

workflow or potential future research directions can be highlighted.
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4.1.1 Consecutive Runs of HDBSCAN

In the case of the data set used in the present study, it is clear that both regularly

identified “main” clusters, the main flow and reacting regions, can be further divided.

The reacting region has in some snapshots been subdivided into regions such as the very

low heat release and very high temperature region along the hot section of the wall, the

transitory “gradient” between the reacting region and the main flow, and many areas

of very high and very low heat release. The main flow could potentially be subdivided

into slower moving, more turbulent regions close to the walls and a fast moving main

flow in the middle of the channel. To investigate further, more fine divisions of the data

set, or potentially other data sets this workflow is applied to, HDBSCAN can be re-run

on just the points of single clusters identified in the original run. In other words, the

initial clustering can be used as a mask for consecutive runs through HDBSCAN or other

parts of this workflow, for a powerful and automated way of finding and describing fine

structure in the data.

4.1.2 Model Order Reduction

Model order reduction is an area of research common in CFD. Reducing a complex model

to a simpler one yielding the same or very similar results is beneficial, primarily in reduc-

ing computational complexity and improving explainability [6]. The robustness of this

workflow, and consistency of results over time, suggests that examining the relationships

between embeddings of consecutive snapshots could reveal relationships between the un-

derlying data. It is possible that the output of this workflow could be used for predicting

the evolution of the data, at least in terms of the properties of clusters in the data,

and possibly the movement of points between them. This would reduce the reliance on

computationally expensive simulations.

A problem to be solved before investigating this use case is how to automatically

label similar regions the same over multiple snapshots. That is, how to ensure that for

example the main flow region uses the same label over every snapshot. This should be
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possible to solve using the MI scores for each cluster, which describe the clusters well and

relatively uniquely. A possible method is that a data set of clusters identified throughout

many snapshots with the features being their MI scores is first constructed. Then a

slightly modified version of this workflow could be applied on this data set, and identify

categories of similar clusters, which would thus be automatically labelled.

4.1.3 Analysis of Hierarchical Relationships Between Data

Constructing hierarchical relationships between data is the foundation of HDBSCAN.

In cases where a bigger cluster can be split into smaller ones, as in the cases shown

in the present work, studying the hierarchical relationships between clusters could lead

to greater insight into the structure of the underlying data. Generally, analysing the

tree structure of possible clusters produced by HDBSCAN, like the one visualised by a

dendrogram in Figure 18, could lead to greater understanding of the relationships between

the various physical and chemical processes involved. This could be an alternative to

further clustering the data, either by hand or algorithmically. This likely extends to other

types of data sets, which can be categorised, and the categories subdivided, for a more

fundamental model of the data.

4.1.4 Applicability to Other Fields

As suggested in the original paper, no component of this workflow is unique to CFD. It

should in theory be applicable to any type of high-dimensional data set. The ease of use,

useful results, and robustness of this workflow warrants consideration for use in other

fields. It can at the very least be used for initial exploration of a data set, due to the ease

and speed with which a general clustering of a high-dimensional data set can be achieved,

together with relatively easily interpreted and useful description of the key features of

each cluster.
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4.2 Conclusion

In conclusion, the workflow developed by Rovira et al. [1] has in the present study been

successfully applied to a different complex reactive flow data set. It automatically identi-

fied and described regions of the simulation with distinct physical and chemical properties

and processes. It was found to be consistent, robust, and widely applicable, as well as

relatively simple to understand and apply and adapt to a particular case. It was able to

find both global, over-arching structure in the data, as well as more detailed local struc-

ture. Certain limitations were found stemming from the nature of the algorithms used,

such as the reliance on big enough quantities of data, which in CFD is only a question of

compute time. On the other hand, the workflow can potentially lower the computational

power required for data analysis, due to its efficiency and effectiveness, and the potential

use case of model order reduction. The workflow was found to be versatile and, seems

adaptable to many use cases, from initial analysis to discovering fundamental structure in

data. New possible applications and further research directions include analysis of hierar-

chical relationships between data, model order reduction, and applying re-applying parts

of the workflow using the identified clusters as a mask, to find more complex, finer, or

fundamental relationships in data, as well as the potential applicability of this workflow

or an adaptation of it to fields outside CFD.
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