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Abstract

This report implements and investigates the behavior of the one-dimensional Ising model

with Monte Carlo simulations and analytical methods. The Ising model provides a way

to capture and study core magnetic properties without performing time-consuming and

expensive experiments in labs. Using the Metropolis-Hastings algorithm, a system of spins

was subjected to different temperatures under the influence of various external magnetic

fields. With each iteration, the spins were flipped. Depending on the change in energy

resulting from every flip, they were then either rejected or accepted for the next iteration.

The magnetization and energy density could then be computed and compared with other

systems of different sizes. The results indicate that large one-dimensional systems do not

have spontaneous magnetization. However, small system sizes show signs of magnetization

at low temperatures. One-dimensional Ising models display many important magnetic

properties and provide a basis on which more complex models can be built. Further

developments include expanding the range of interactions between neighboring spins,

investigating how multiple systems interact, and exploring possible parallels with group

sociology.
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1 Introduction

Reality often proves too complex to model with practicable computing power. The sheer

scale of the universe quickly extinguishes the aspiration of deterministically simulating, for

example, all particle interactions. Instead, simpler models can be used to emulate the main

characteristics of their physical counterparts. They also provide full control of parameters,

making it possible to experiment even beyond known physical limits and discover where

current intuitions or models break down. These insights could indicate promising future

research areas and shed light on where the understanding of today falters. Together with

statistical methods, these techniques have become important in the field of theoretical

and statistical physics. One such example is the simulation of magnetism, where computer

models can give insights into real-world underlying mechanisms. [1]

1.1 The 1D-Ising Model

The Ising model is one of the simplest models used to study magnetic materials. It

consists of a lattice of spins that can solely point up or down and interact with their

intermediate neighbors, as shown in Figure 1 [2]. A specific configuration of a system is

defined as Ωi = {σ1, σ2, σ3, . . . , σN}, where every configuration is a particular composition

of upward and downward spins.

Figure 1: The Ising model is composed of N lattice sites with bidirectional spins. In
one dimension, every spin, except those at the free ends, has two neighbors. Blue arrows
indicate upward spins, and red arrows represent downward spins.
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Every spin act as a miniature magnet and possesses amagnetic moment whose orientation

either contributes to or counteracts the total magnetic field. The combined strength of

the spontaneous magnetic field is called magnetization, denoted m. The magnetization

of a specific system is written m(Ωi). In ferromagnets, the magnetic moments tend to

align naturally, which increases the magnetization of the system. Other materials, called

paramagnets and diamagnets, have magnetic moments that only align in response to

external magnetic fields. Systems having zero magnetization, due to spins aligning in an

orientation opposite that of their neighbors, are said to be antiferromagnetic, see Figure

2. [3]

Figure 2: In ferromagnetic materials, all spins point in the same direction, amplifying the
total magnetic field. In antiferromagnetic materials, all spins instead point in opposite
directions, canceling out the overall magnetic field.

1.1.1 System Energy

Each spin is only affected by its nearest neighbors, where the interspin exchange constant

J , determines the strength of the interactions. Every system tends towards a ground

state, where the total energy is the lowest. The product of two magnetic moments and

−J , gives the contribution of the two magnetic moments to the magnetization of the

system, as in Equation (1):
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H(σiσi+1) = −Jσiσi+1. (1)

Spins in the same direction are favorable and contribute negative energy to the system,

while spins in opposite directions instead contribute positive energy, as seen in Figure 3.

Figure 3: An upward spin has the value 1, while a downward spin has the value -1. The
product of two spins in the same direction multiplied by a negative constant will always
yield a negative energy contribution. The product of two opposite spins multiplied by a
negative constant will instead yield a positive energy contribution.

A bounded system is a lattice with free ends, while an unbounded system is one of infinite

size that can be simulated using the periodic boundary condition, denoted λ [1]. If λ = 0,

the system is bounded and is said to have an open boundary condition, and a system is

unbounded if λ = 1. Accounting for external magnetic fields, which is the sum of the

spins multiplied by the field strength h, the system energy is described by Hamiltonian

H given by

H = −J
N−1∑
i=1

σiσi+1 + λ(−JσNσ1)− h
N∑
i=1

σi, (2)

where J is the interspin exchange constant, σi the value of the spin at lattice site i, λ

the periodic boundary condition, and h the strength of an external magnetic field [1].

The first term of the right-hand side of the equation describes the energy between spins

in a bounded system. The second part is the extra energy contribution from multiplying

the last spin with the first, which is relevant in unbounded systems. A λ set to zero will

ignore this part of the equation. The last term in (2) represents the energy contributed

from an external magnetic field.
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1.1.2 The Boltzmann Distribution and Free Energy

In reality, however, a system cannot reach its ground state. The outside temperature

constantly provides energy that causes spins to flip. How many magnetic moments that

flip is dependent on the temperature and through the Boltzmann distribution

p(EΩi
) ∝ e

−EΩi
kBT , (3)

where p(EΩi
) is the probability of having a specific system, Ωi, with energy EΩi

at tem-

perature T [4]. The Boltzmann constant denoted kB, which in this report is equal to one.

The distribution is given up to proportionality and must be normalized for all probabili-

ties to sum to one. Using C as a normalization constant equal to 1∑
a
e−EakT

, where a is all

possible system energies, the probability can be expressed as

p(EΩi
) = Ce

−EΩi
kBT . (4)

Interestingly enough, systems with different magnetizations can have the same proba-

bility, as they are only dependent on the temperature and system energy. A summary and

examples of the terms magnetization, energy, and Boltzmann distribution probability are

shown in Figure 4.

Figure 4: Examples of different system configurations and their magnetization, energy,
and probability.
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To account for system energies at temperatures above zero Kelvin, the change in free

energy can be used as an extension of H. It estimates when a system is prone to flip

spins, eventually leading to an antiferromagnetic state, or when the system rather stays

fixed in a ferromagnetic state. Helmholtz free energy, F , determined by

F = E − TS, (5)

describes the free energy in the absence of an external magnetic field. Here, E is the

internal energy, as determined by the Hamiltonian in Equation (2), T the temperature,

and S the entropy of the system [2]. Entropy can be defined as the number of possible

configurations of a system, denoted Ωconf, as defined by (6) [2]:

S = kB log(Ωconf). (6)

It is possible to examine the flip of the lowest energy cost to estimate the change in

free energy. In a system with all spins aligned in the same direction, a lattice site can

be selected from where all subsequent spins are flipped. This is called a domain wall, see

Figure 5, and the energy change of this particular flip is +2J .

Figure 5: A domain wall separates two regions of unidirectional magnetic moments.

As the domain wall cannot be placed after the last spin in a bounded system, the

number of domain wall configurations is N − 1. It is possible to describe the change in

free energy with these values by:

∆F = ∆E − TS = +2J − kBT log(N − 1). (7)
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According to the second law of thermodynamics, a system constantly tends to minimize

its energy and maximize its entropy. Therefore, a negative change in free energy will

always be favorable, causing the system to flip spins. On the other hand, a positive free

energy change is less desirable, implying a lower probability for the system to flip.

1.2 Specific Heat and Magnetic Susceptibility

The critical temperature Tc is the temperature at which the system goes from being

magnetized to being antiferromagnetic [2]. Specific heat and magnetic susceptibility can

be used to find the critical temperature as these parameters often achieve their maxima at

Tc. Heat capacity, Cv, is computed from the variance of the energy, denoted 〈E2〉− 〈E〉2,

as seen in Equation (8). However, heat capacity is an extensive quantity that will grow

in response to the system size. Therefore, the heat capacity can be divided by the system

size N to produce an intensive quantity. Dividing Cv by N gives the specific heat, seen in

Equation 9. Magnetic susceptibility, χ, is computed with the variance in magnetization,

denoted 〈M2〉−〈M〉2, which is shown in Equation (10). Here, β = 1
kBT

, and the variances

represent the standard deviations for the energy and magnetization, respectively. [1]

Cv =
β

T
(〈E2〉 − 〈E〉2) (8)

cv =
Cv
N

(9)

χ = β(〈M2〉 − 〈M〉2) (10)

1.3 Mean-Field Approximation

There are multiple analytical approximations to the 1D-Ising model. The one covered in

this report is the mean-field approximation. The mean-field approximation is based on

two assumptions: (1) that the average magnetization of any one spin, denoted 〈σ1〉, is
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equal to the total magnetization average, denoted 〈m〉, and (2) that fluctuations around

the average can be ignored [1]. Starting with Equation (2), the energy of the spin at

lattice site 1 is given by:

H(σ1) = −σ1

(
J

q∑
j=1

σj + h

)
,

where q stands for the number of nearest neighbors to the spin σ1. Adding and subtracting

the expression qJm does not alter the value of the above expression but includes the

number of neighbors, q, the spin interaction, J , and the magnetization, m. Performing

this arithmetic trick gives:

H(σ1) = −σ1

(
J

q∑
j=1

σj + h+ qJm− qJm

)

= −σ1(qJm+ h)− σ1J

q∑
j=1

(−qJm)

= −σ1(qJm+ h)− Jσ1

q∑
=1j

(σj −m).

Using the no-fluctuation assumption, the second part of the expression can be discarded,

which simplifies the expression to

H(σ1) = −σ1(qJm+ h).

Then a weighted average for the energy of spin σ1 is computed. A weighted arithmetic

mean is calculated by summing all values in the vector xi multiplied by their weights in

the weight vector, wi, and then dividing by the sum of the weights [5].

〈xw〉 =

n∑
i=1

wixi

n∑
i=1

wi

(11)
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The spins follow a Boltzmann distribution that is proportional to e
−E
kBT . Using the Hamil-

tonian from Equation (2) for σ1, the expression simplifies to eβH(σ1). In this case, the

previously mentioned term determines the weight for the different states of σ1. As σ1

takes on the values 1 and −1, representing an upward and downward spin, the weighted

average is the following:

〈σ1〉 =
1 · eβH(σ1) + (−1) · e−βH(σ1)

eβH(σ1) + e−βH(σ1)
=
eβH(σ1) − e−βH(σ1)

eβH(σ1) + e−βH(σ1)
.

The last expression follows the pattern for a hyperbolic tangent,

tanh(x) =
ex − e−x

ex + e−x
(12)

Therefore, it is possible to simplify the expression for the weighted average of the energy

to:

〈σ1〉 = tanh(βH(σ1)).

Using q = 2, the expression for H(σ1), and the first assumption that 〈σ1〉 = 〈σi〉 = 〈m〉,

a complete equation for the average magnetization is:

m = tanh

(
2Jm+ h

T

)
. (13)

1.4 Exact Solution

The 1D-Ising model also has an exact analytical solution given by

m =
sinh(βh)√

sinh2 βh+ e−βJ
, (14)

where m is the magnetization, β = 1
kBT

, h the strength of an external magnetic field, and

J the interspin exchange constant [1].
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1.5 Monte Carlo, Metropolis-Hasting, and Markov Chains

It is cumbersome to compute the effects of every individual particle in large systems.

Monte Carlo simulations takes many random samples from the total and determines their

average [2]. More iterations should, therefore, give a more representative approximation of

reality. The simulations make it possible to attain very accurate approximations, although

it was not possible to compute every single event.

The Metropolis-Hastings algorithm takes samples directly from a probability distri-

bution when the normalizing constant is unknown. This way, it is unnecessary to take a

weighted average, as in standard Monte Carlo methods. The one-dimensional Ising model

follows the Boltzmann distribution proportional to e−dE/T . In Metropolis-Hastings, can-

didates are repeatedly drawn from the distribution and then either rejected or accepted

for the next round. Every iteration grows a series of states in which every state is only

dependent on the previous, which is called a Markov Chain. A candidate is always ac-

cepted if the result of evaluating it with the distribution, α, is greater than one. However,

if 0 < α < 1, the candidate is accepted with probability α and rejected with probability

1− α. [6]

1.6 Literary Review

Ernst Ising created the Ising model in 1922, and it has since been studied and applied

extensively [7]. In condensed matter physics, it allows scientists to study the properties of

magnetic materials, lattice gases, and superconductors [7, 8]. Moreover, some use it as a

simple socio-economic model to track, for example, segregation and language development

[9]. The one-dimensional Ising model has also been implemented with quantum computers

and solved exactly [10].

This study aims to use the one-dimensional Ising model to investigate the properties

of magnets. Ernst Ising’s exact solution states that no magnetization can occur without

external magnetic fields. Nonetheless, this report will focus on minuscule temperatures
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in the 0 < T < 16 range and examine if spontaneous magnetization can arise in different-

sized systems. Moreover, a great weight is placed on the implementation and efficiency

of the algorithm to facilitate future research in multiple dimensions.

2 Method

All the code and graphs used for this paper can be found on GitHub with the following

link: https://github.com/aliceheiman/1d-ising-model.

2.1 Monte Carlo Simulations

A system of N spins was initialized with all spins in random directions. Then a spin was

flipped, and the resulting change in energy, dE, from the flip was computed. A random

number, r, was then drawn with a value ranging from 0 < r < 1. It was compared to

the lowest value between one and e−dE/T . If r < min(1, e−dE/T ), the flip was accepted.

Otherwise, it was rejected, and no change to the system was made for that iteration,

see Figure 6. For example, if dE would be positive, the term e−dE/T would become very

small. Therefore, r would be compared to this tiny number, resulting in a low probability

for the flip to be accepted. On the other hand, a negative dE would give a large e−dE/T .

The minimum between one and e−dE/T would then be one. As r is always less than one,

flips yielding a negative energy change would always get accepted.
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Figure 6: A schematic of the Metropolis-Hastings algorithm.

A great weight was placed on the implementation and efficiency of the algorithm. Instead

of flipping only one magnetic moment with each iteration, the system was split into

its even and odd spins, shown in Figure 7. As every spin is only affected by its two

intermediate neighbors, it was possible to flip and examine the energy change of every

other spin without disorienting the whole system.

11



Figure 7: The total system can be divided into two vectors, one containing all even lattice
sites and the other all odd lattice sites.

To compute the change in energy of flipping all even spins in the system shown in Figure

7, it is possible to first consider the energy change of inverting the direction of σ2.

Eold = H(σ2) = −J(σ2(σ1 + σ3))− hσ2

Enew = H(−σ2) = −J(−σ2(σ1 + σ3)) + hσ2

dE = Enew − Eold

= −J(−2σ2(σ1 + σ3)) + 2hσ2

= 2Jσ2(σ1 + σ3) + 2hσ2

Using the same expression for all even flips gives the following:

~dEΩE
=


2Jσ2(σ1 + σ3) + 2hσ2

2Jσ4(σ3 + σ5) + 2hσ4

2Jσ6(σ5 + λσ1) + 2hσ6


where λ is the periodic boundary condition allowing a looping system. Notice how the

first and last terms together in each expression constructs the even vector. The first terms

within the parenthesis compose the odd vector, and the second terms constitute the odd

vector shifted to the right by one. Applying this insight simplifies the expression to
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~dEΩE
= 2J ~ΩE( ~ΩO + ~ΩO−shifted) + 2h ~ΩE, (15)

where the operations are an element-wise product and sum of vectors. Using the same

logic, an expression for the change in energy of all odd spins is as follows:

~dEΩO
= 2J ~ΩO( ~ΩE−shifted + ~ΩE) + 2h ~ΩO (16)

With Equations (15) and (16), every iteration consisted of flipping, rejecting, and

accepting all even and odd spins. This way, every lattice site is tested for a flip with each

iteration. Therefore, the total number of complete iterations of the algorithm could be

dramatically reduced by a factor of N . The system was taken through 1000 iterations of

this procedure. A thermalization phase consisted of the first 30% iterations, in which the

system could adjust to the parameters of the current simulation. After this phase, every

iteration ended with computing both the magnetization and energy of the system. Finally,

the mean magnetization and energy were computed, denoted 〈m〉 and 〈E〉. These values

were then divided by the system size, N , to form a magnetization and energy density, as

in 〈m〉
N

and 〈E〉
N
. This allowed the results of the simulation to be compared with differently

sized systems. The systems were subjected to different temperature spans and varying

degrees of external magnetic fields. Furthermore, various system sizes were investigated.

2.2 Analytical Methods

Results were also gathered from two analytical methods: the mean-field theory, seen in

Equation (13), and the exact solution in one dimension, as seen in Equation (14). However,

in the mean-field approximation, m is both on the left and right sides of the equation and

must be computed numerically. By repeatedly using a starting value and comparing with

the result, an approximation of m could be determined using the fixed point algorithm,

see Algorithm 1.
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Algorithm 1: Computing magnetization with mean-field theory.
mi = initial value;
while |mi+1 −mi| > ε do

mi+1 = tanh
(

2Jmi+h
T

)
;

mi = mi+1

end
return mi+1

3 Results

This section presents the results from running Monte-Carlo simulations over different

temperature spans, using various external magnetic field strengths, and comparing them

with analytical methods. All simulations in sections 3.2, 3.3, and 3.4 use an open boundary

condition.

3.1 A Note on Units

For this report, the Boltzmann constant kB has a value of one to simplify the mathematics

and coding while still preserving the general properties of the Ising model. Therefore, the

units of all computations are not standard SI units. The rest of this report will use only

the numerical parts of the results.

3.2 Varying Temperatures without External Magnetic Fields

Figure 8 shows the results of the Monte Carlo simulations and analytical methods with

no external magnetic field, h = 0. Solely the temperature is changed between rounds.
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System Magnetization Density

(a) The average magnetization density for
different temperature values, 0 < T < 1.

System Energy Density

(b) The average energy density for different
temperature values, 0 < T < 1.

Figure 8: The average magnetization and energy density for varying temperatures without
an external magnetic field.

As can be seen in Figure 8a, the average magnetization varies extensively. However, the

magnetization stabilizes at zero for the temperature T ≈ 0.75. The energy density graph is

more expected; as the temperature increases, it provides the system with energy, causing

the energy curve to grow. The results are very different when comparing with the exact

solution and the mean-field theory, as seen in Figure 9.

System Magnetization

0.0 0.5 1.0 1.5 2.0
T

1.0

0.5

0.0

0.5

1.0

m

N = 1000
J = 1.0
h = 0.0

= 0.0

Monte Carlo
Mean-Field
Exact

Figure 9: The average magnetization of a system of size N = 1000 with no external
magnetic field, as predicted by Monte Carlo simulations (blue), mean-field theory (green),
and the exact analytical solution of the one-dimensional Ising model (red).
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The rapid change in magnetization can be closely observed in small systems, as seen in

figures 10a and 10b. Every pixel represents the state of a spin at a specific lattice site.

A blue pixel indicates an upward spin, while a red pixel indicates a downward spin. In

essence, this forms a system snapshot, and the vertical axis makes it possible to track its

evolution over the simulation.

System Snapshot, Large J/T Ratio
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= 1.0

T = 1.3
J = 4.0
h = 0.0

1

1

(a) A relatively large J to T ratio. It suf-
fices for one spin to change direction for every
other spin to flip, as seen in the middle of the
above system snapshot.

System Snapshot, Small J/T Ratio
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N = 50
= 0.0

T = 5.0
J = 4.0
h = 0.0

1
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(b) A relatively small J to T ratio. The tem-
perature constantly causes spins to flip, which
leads to a disordered system state.

Figure 10: Snapshots of systems of size N = 50. Blue pixels represent upward spins, while
red pixels represent downward spins.

3.3 Varying Temperatures with External Magnetic Fields

Figure 11 shows the results from exposing the system to an external magnetic field of

strength h = 0.5. In this case, both the Monte Carlo simulations and analytical methods

agree well with each other.
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System Magnetization Comparisons

0.0 2.5 5.0 7.5 10.0 12.5 15.0
T

0.0

0.2

0.4

0.6
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1.0

m

N = 1000
J = 1.0
h = 0.5

= 0.0

Monte Carlo
Mean-Field
Exact

Figure 11: The average magnetization of a system of size N = 1000 with the presence of
an external magnetic field, as predicted by Monte Carlo simulations (blue), mean-field
theory (green), and the exact analytical solution of the one-dimensional Ising model (red).

3.4 Varying External Magnetic Field

Figure 12 shows only the results for a varying external magnetic field from the Monte

Carlo simulations.

System Magnetization Density

0.5 0.0 0.5
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J = 1.0
T = 1.0

= 0.0
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(a) The average magnetization density for
varying external magnetic field strengths.

System Energy Density
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(b) The average energy density for varying
external magnetic field strengths.

Figure 12: The average magnetization and energy density at the presence of an external
magnetic field varying in field strength.
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The comparisons between the different methods are shown in Figure 13. In this case,

the Monte Carlo results agree with the exact analytical solution of the one-dimensional

Ising model. The mean-field approximation works relatively well as it also conforms to

the external magnetic fields. However, it is more extreme and steeper than the other two

methods, rapidly changing magnetization around h = 0.

System Magnetization Comparisons

0.4 0.2 0.0 0.2 0.4
h

1.0

0.5

0.0

0.5

1.0

m

N = 1000
J = 1.0
T = 1.0

= 0.0

Monte Carlo
Mean-Field
Exact

Figure 13: The average magnetization of a system of size N = 1000 at the presence of a
varying external magnetic field, as predicted by Monte Carlo simulations (blue), mean-
field theory (green), and the exact analytical solution of the one-dimensional Ising model
(red).

3.5 Small Systems of Size N < 100

As discussed in the Introduction, the free energy could indicate when the system is prone

to flip or not. For large systems in one dimension, F will always be negative, as the

rightmost term will grow indefinitely while 2J stays constant, see (17).

∆F = 2J − kBT log(N − 1) =⇒ lim
N→∞

∆F < 0. (17)
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This is why the exact solution always yields zero magnetization in the absence of an

external magnetic field. However, the free energy could be positive for minuscule system

sizes. Figure 14 displays the values of ∆F for different system sizes and temperatures

with various interspin exchange constants.

Free Energies for Varying Temperatures and System Sizes
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2.5 5.0
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20
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10

5

0
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10

Free Energy

Figure 14: The free energy is computed at every point in the size-over-temperature graphs,
represented as a color. The results are compared for different values of the interspin
exchange constant J .

Using N = 50 and J = 4, a similar graph as in Figure 8 was produced, as seen in

Figure 15. Although the magnetization constantly changes direction, it is also interesting

to solely investigate its magnitude. In both cases, all spins align, which makes the specific

direction less important. Plotting 〈m2〉 assures the magnetization remains positive while

still allowing it to reach zero at higher temperatures.
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Figure 15: The average magnetization and energy density for a small system, for varying
temperatures without an external magnetic field.
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Figure 16: The average magnetization density squared and energy density for a small
system, for varying temperatures without an external magnetic field.
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Figure 17: The graphs for specific heat, cv, and magnetic susceptibility density, χ
N
, reach

their peaks at the moment of rapid decrease of the magnetization graph.
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Figure 18: The average magnetization density squared and energy density for a small
system with the periodic boundary condition.
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4 Discussion

As shown in Figure 9, the exact solution for an infinite system is zero regardless of tem-

perature. The mean-field approximation does not seem accurate in this situation, as it

begins with a magnetization of one and does not reach zero until T = 2. Why this hap-

pens is because mean-field assumptions fail in one-dimensional systems. As stated in the

Introduction, the mean-field theory ignores fluctuations around the magnetization aver-

age. It works better in higher-dimensional systems where interactions between neighbors

become more significant than thermal fluctuations. However, these fluctuations dominate

in one-dimensional systems and force them into antiferromagnetic states, which results

in faulty predictions by the mean-field approximation.

Although the Monte Carlo simulations show odd behavior at low temperatures, they

agree well with the exact solution for higher temperatures. Still, there are some possible

explanations as to why these sharp fluctuations appear. At low temperatures, the ratio

between the interspin exchange constant J and the temperature T is comparatively large.

On the one hand, this means that the interactions between the spins become more sig-

nificant, as the temperature has a relatively small influence on the system. Therefore,

they could overpower the energy, otherwise trying to force the system into an antiferro-

magnetic state, explaining why the system manages to stay magnetized. On the other

hand, as the interactions between the spins are so strong, it suffices for one spin to flip

to start a chain reaction that forces all others to change direction, see Figure 10a. For

higher temperatures, the J to T ratio lowers, and the extra energy from the temperature

dominates, forcing the system to repeatedly create domain walls, see Figure 10b.

In the case of an external magnetic field, seen in Figure 11, all methods agree well

with each other. Therefore, both the mean-field approximation and Monte Carlo simula-

tions seem to work under these conditions. At relatively low temperatures, the external

magnetic field forces the spins to align with it, resulting in magnetization of the system.

As the temperature increases, however, more magnetic moments start to flip. When the
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spins point in different directions, the magnetization of the system lowers. At T ≈ 15,

the system reaches an antiferromagnetic state of complete opposite spins and zero mag-

netization.

Figure 12 shows a very symmetrical behavior. When the external magnetic field is

negative, all spins point downwards, causing a negative magnetization. As the strength

of the magnetic field approaches zero, so does the magnetization. Eventually, the magne-

tization reaches an expected value of zero at the removal of the external magnetic field.

When the external magnetic field is positive, all spins instead point upwards, causing a

positive magnetization. The energy graph is also symmetrical. When the external mag-

netic field is strong, it forces all spins to align. This is analogous to the ground state and

requires the least amount of energy to maintain. As the strength of h subsides, the spins

become more disordered, which increases the energy. The system is as most disordered

at h = 0 when the absolute magnetization is at its lowest. The energy decreases as the

external magnetic field once again increases in strength.

4.1 Small Systems of Size N < 1000

As seen in Figure 16, the magnetization of the smaller system is very similar to Figure

11, which included an external magnetic field. The specific heat and magnetic suscepti-

bility suggest a critical temperature at the exact point where the magnetization starts

to decline, as can be seen in Figure 17. These results indicate that small systems do

have a critical temperature and a spontaneous magnetization below it. However, with the

periodic boundary condition, the magnetization follows a similar path as for the larger

systems, as seen in Figure 18, coherently with the use of periodic boundary conditions to

simulate infinite systems. In this case, the change in free energy will always be negative,

forcing the system to flip spins. Therefore, the magnetization becomes more sporadic

than before and quickly reaches zero.
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4.2 Limitations

There are possible limitations to this study. As an example, the Monte Carlo simulation

did not seem to converge in specific cases. Either it is necessary to use more iterations or

modify the algorithm. For instance, sampling from e−dE/T for low temperatures results in

very small or large values which, compared with r, will either always reject or accept flips.

How the magnetization varies over iterations can be seen in Figure 19 in the Appendix.

As a final note, this report solely investigated systems of size N ≤ 1000. To further

examine the free energy for systems approaching infinite spins, it would be preferable to

experiment with larger Ising models of N >> 1000.

4.3 Applications and Further Development

According to the exact solution from Equation (14), one-dimensional systems do not expe-

rience spontaneous magnetization without an external magnetic field. Therefore, systems

approaching infinite size do not undergo a phase transition as they enter an antiferromag-

netic state for all temperatures above zero. However, models of adequately small sizes

still have the potential to show these types of behavior. Their relatively modest compu-

tational load makes it possible to experiment with basic magnetic properties quickly and

inexpensively. The model is also a foundation upon which more complicated models can

be built. For example, many physical properties of one-dimensional systems transfer into

higher dimensions.

As a further development, it would be intriguing to change more parameters. For

example, would the system display similar behavior if it could interact with neighbors

two or three lattice sites away? Similarly, investigating how multiple one-dimensional

systems interact could also provide insights into how these systems behave. Moreover,

could sociology and the Ising model be tied together to show similarities between how, for

example, people adapt themselves and their opinions in response to their surroundings?

All these questions are subject to exploration and research into this versatile model.
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A Appendix

The Evolution of a System

Figure 19: How the magnetization varies during the iterations of the Metropolis-Hastings
algorithm for different values of T . In this experiment, N = 1000, λ = 0, h = 0, and
J = 1.

System Snapshots

Figure 20: Various system snapshots of a system of size N = 50 for different values of T .
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