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Abstract

This study investigates associahedra - polytopes which are interesting in various mathe-

matical disciplines such as topology and combinatorics. We prove that the D6 action on

the planar rooted trees correspond to rigid motions of a certain realization of K5. We

also offer an explicit description of which element in D6 corresponds to what type of rigid

motion of K5. In further research this could be generalized to Kn.
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1 Introduction

The mathematical structures called associahedra of dimension n, denoted Kn+2, is a

certain kind of polytope in n-dimensional space. It was first described in 1951 by the

mathematician Dov Tamari in his doctoral thesis [1]. The associahedron has been used

to investigate the property of associativity in topology by among others, J. Stasheff [2].

The structure is interesting in many areas of mathematics, e.g. in the theory of operads

and homotopy theory.

The associahedron is closely related to combinatorics since its vertices are in one-to-

one correspondence with a type of graph called planar rooted binary trees. These graphs

have symmetry and this symmetry can be described with a mathematical structure called

a group. The aim of this article is to describe how these symmetries can be seen on the

associahedron.

The symmetries of the associahedra has been studied on an abstract level by Carl W.

Lee [3]. We offer a more hands on and explicit presentation.

2 Basic Definitions and Examples

2.1 Basic Concepts in Group Theory

We begin by giving definitions of some basic concepts necessary for understanding the

investigation of the symmetric properties of the associahedra. Symmetry is described by

a mathematical concept called a group.

Definition 1 (Group). A group G is a set together with an operation � which takes

any two elements of G and produces a third. The operation should be associative, i.e.

for all a, b, c ∈ G, a � (b � c) = (a � b) � c. There should exist an element e such that

e� a = a� e = a. Lastly, every element in G should have an inverse element, that is, for

all a ∈ G there exist á ∈ G such that a� á = á� a = e.

The element e is called the identity element. Note that it is not necessary that a�b =
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b� a for all a, b ∈ G. If that is the case, then the group is an abelian group. Often, a� b

is just written as ab and a� a� ...� a︸ ︷︷ ︸
n times

as an. It is easy to show the uniqueness of the

identity element and the inverse element of an element a. We give a basic example in

order to make the concept of a group more easy to understand.

Example 1. The dihedral groupDn is the group consisting of all rotations and reflections

of a regular polygon of n sides. D3 is the rotations and reflections of a triangle and it

consists of 6 elements. The identity element leaves the triangle unchanged1. If one labels

(a) The initial configuration
of the triangle and its labels.

(b) Rotation of Figure 1a by
4π/3 radians as dictated by
ρ2.

(c) Reflection across the line
perpendicular to BC in Fig-
ure 1a.

Figure 1: Illustration of how the elements of D3 affects a triangle with labeled vertices.

the vertices of the triangle as in Figure 1a, then a rotation of 4π/3 radians produces the

triangle in Figure 1b. That rotation is denoted ρ2 since it can be seen as the initial rotation

ρ of 2π/3 radians applied twice. Furthermore, a reflection along a line perpendicular to

BC in Figure 1a, produces the triangle in Figure 1c. The group operation a� b could be

seen as first rotating or reflecting the triangle in the way b describes, then rotating or

reflecting the triangle in the way a describes.

A subgroup is a subset of the elements of a group such that the subset itself forms a

group under the same operation. The order of a group is the number of elements a group

contains. The order of a subgroup must always divide the order of the group. This is a

central result in elementary group theory known as Lagrange’s theorem.
1Can be seen as rotating the triangle three times.
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Definition 2 (Group action). Consider a non-empty set X and a group G, a group

action on the set X is a function θ : G × X → X. Let e be the identity element of G

and g, h ∈ G. Let x ∈ X. The group action should satisfy the following: θ(e, x) = x and

θ(g, θ(h, x)) = θ(gh, x).

The triangles in Figure 1 can be viewed as elements in a set which D3 acts upon.

The generators of a group G is any set of elements of G such that all other elements in

G can be viewed as the generators composed with each other in some way. Additionally,

among the generators there should not exist some element which can be viewed as the

other generators composed with each other.

Definition 3 (Orbit). The orbit of an element x in a set X under the action of a group

G is the set {θ(g, x) : g ∈ G}.

In this paper we will consider action on sets by the dihedral group. When talking

about orbits, we will mostly mean the set {θ(g, x) : g is a generator of G}. For the one

interested in groups or would like to know more, we recommend the reader to pic up any

book on abstract algebra such as Contemporary Abstract Algebra by J. A. Gallian.

2.2 Basic Concepts in Graph Theory

A multiset is a set-like structure in which duplicates of elements are allowed but no order

is defined between the elements. A multiset can be denoted by square-brackets. We now

define graphs - a central concept in combinatorics.

Definition 4 (Graph). A graph, H, is an ordered pair H = (V,E) of a set V , called

the vertices and a multiset of pairs of vertices, E, called the edges. If the pairs of the

vertices are ordered pairs, then the graph is an ordered graph. If the pairs of the vertices

are unordered, then the graph is an unordered graph.

In this article a graph - if not explicitly pointed out - is an unordered graph. Note that

in combinatorics, a graph is not a way of representing functions, but a way of describing
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a relation between things. The "things" are visualized by dots, called nodes or vertices,

and the relations are visualized by connecting two nodes with an edge.

Example 2. Let H be a graph, H = (V,E), where V = {v1, v2, v3, v4, v5, v6, v7} and

E = [{v1, v2}, {v1, v2}, {v1, v2}, {v2, v3}, {v2, v4}, {v3, v4}, {v4, v5}, {v5, v6}, {v3, v3}]. Then

the graph is represented by:

Figure 2: An example of a graph.

We now move on to define the type of graphs we will work with in this paper.

Definition 5 (Tree). A tree is a graph in which any two vertices are connected by a

unique path.

The graph in Figure 2 is not a tree since not every vertex is connected to another one

by a unique path.

Definition 6 (Planar rooted tree, PR-tree). A tree is a planar rooted tree if one vertex

is marked and the tree is embedded in the plane. In this paper we add the additional

restriction that no vertex are allowed to have degree two. The degree of a vertex is the

number of edges which contains that vertex. The marked vertex is called the root and

should have degree one. All other vertices with degree one are called leaves. The vertices

with degree one are called outer vertices and all other vertices are called inner vertices.
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Definition 7 (Planar rooted binary tree, PRB-tree). A planar rooted binary tree is a

planar rooted tree with no vertex of degree greater than three.

2.3 Polytopes and Their Combinatorial Interpretation

A polytope is a generalization of a polygon or a polyhedron to any dimension. Basically, an

n-polytope can be seen as a shape in n-dimensional space with "flat" sides. This intuitive

notion is made mathematical by the notion of the convex hull of a set of non-coplanar

points in Rn.

A k-cell is a k-polytope which is a part of an n-polytope, e.g. the 0-cells of a cube are

its vertices, the 1-cells of a cube are its edges and the 2-cells of a cube are the squares

making up the faces of the cube. The 3-cell is the cube in itself.

Example 3. The simplest kind of polytope is a simplex. A simplex of dimension n is the

convex hull of (n+1) non-coplanar points in Rn. The intuitive notion of a simplex is that

it is an n-dimensional triangle. A simplex of dimension 2 is any triangle and a simplex of

dimension 3 is any tetrahedron.

The combinatorial structure of a polytope is the way different cells are connected to

each other, i.e. the size and proportions are irrelevant. The combinatorial structure of

a polytope can be described by something called a face poset. In this article we define

polytopes in terms of their combinatorial features and by a realization we mean a way to

describe the polytope geometrically.

Definition 8 (Partially ordered set). A partially ordered set, also called poset, is a set,

S, together with a relation, �, such that the relation is defined between certain elements

a, b ∈ S but not necessarily between all elements. The relation should satisfy the following:

for any element a ∈ S, a � a. If a � b and b � a then a = b. Lastly, if a � b and b � c

then a � c.

Example 4. A partially ordered set can be visualized with a directed graph called a

Hasse diagram. This is done in Figure 3. In a Hasse diagram, for an element a to be
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placed on a higher level than another element b, means that b � a. The edges in a Hasse

diagram illustrate which vertices the order relation is defined between.

A B C D

E F

G

Figure 3: A poset visualized with a Hasse diagram. A � E � G is true but F � G is not
defined.

Definition 9 (Face poset). A face poset of a polytope is the poset of all cells ordered

such that A � B if A is contained in B, i.e. A is a cell and a subset of B.

Example 5. Consider a cube with labeled vertices as in Figure 4. Then the face poset

is visualized with its Hasse diagram in Figure 5.

Figure 4: A cube with labeled vertices. The other cells are labeled by what vertices they
contain. The face poset consists of all cells ordered such that any cell is less than another
if that cell is contained in the other, e.g. A � AB � ABEF � ABCDEFGH.
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Figure 5: Hasse diagram representing the face poset of the cube in Figure 4. Since the
empty set is a subset of any set, the empty set is sometimes included in the face poset.

Intuitively, two posets are isomorphic when they are structurally the same. The formal

definition can be found below.

Definition 10 (Isomorphic posets). Two partially ordered sets X and Y with order

relation � and E respectively, are considered to be isomorphic if there is a one-to-one

correspondence f : X → Y such that x1, x2 ∈ X and x1 � x2 if and only if f(x1)Ef(x2).

The map f is said to be an isomorphism.

3 The Associahedra

The Associahedra are a family of polytopes of which there exists one in every dimension.

The polytope is defined entirely by its combinatorial structure. However, the simplest way

to define what associahedra is requires an understanding of something called diagonalized

polygons.
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3.1 Diagonalized Polygons

A regular polygon in which 0 or more diagonals are drawn between any two non-consecutive

vertices in such a way that no diagonal cross another diagonal is called a diagonalized

polygon. In this article, we denote the set of all diagonalized n-sided polygons with d

diagonals Qn,d. The poset of all diagonalized n-sided polygons, ordered such that one

diagonalized polygon P1, satisfies P1 � P2 if P1 can be obtained from P2 by adding

diagonals, is denoted by Qn.

3.2 Defining Associahedra

We are now in position to give a definition of the central structure studied in this article.

Definition 11 (Associahedron). The Associahedron of dimension n, denoted Kn+2, is

the polytope whose face poset is isomorphic to Qn+3.

This means that all 0-cells (vertices) of Kn correspond to all fully diagonalized (n+1)-

sided polygons, i.e. diagonalized polygons with n− 2 diagonals. All 1-cells correspond to

diagonalized polygons with n− 3 diagonals, 2-cells correspond to diagonalized polygons

with n− 4 diagonals and so on.

What determines whether or not two vertices should be connected in Kn? From the

definition of Kn it follows that two vertices are connected if the diagonalized polygons

corresponding to the vertices differs from each other by only one diagonal. This can easily

be realized when considering the Hasse diagram of Qn+1 which by definition is isomorphic

to the face poset of Kn.

The more general question at this point could be: what determines which cells are

contained in another in Kn? Again, by the definition of Kn, a k-cell is contained in a

(k + 1)-cell if and only if all diagonals in the diagonalized polygon corresponding to the

(k + 1)-cell are shared by the diagonalized polygon corresponding to the k-cell.
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Figure 6: A part of the Hasse diagram of Q6, showing how a diagonalization is less than
another diagonalization. The vertices of K5 which correspond to the two polygons with
three diagonals are connected with an edge in K5 since they both are "less" than the
diagonalized polygon with two diagonals corresponding to an edge.

3.3 The Correspondence Between PR-Trees and Diagonalized

Polygons

There is a direct correspondence between PR-trees and the diagonalized polygons de-

scribed above. Let Tn be the poset of all PR-trees with n leaves. Then Tn is isomorphic

to Qn+1. This can be realized by letting every side in the polygon correspond to an outer

vertex of the PR-tree and draw one inner vertex in every region of the diagonalized poly-

gon and drawing one edge from that vertex to every side of that region. This procedure

can be seen in Figure 7.

From this it follows that the associahedra Kn can also be defined as the polytope

whose face poset is isomorphic to Tn. In fact, the diagonalized polygons are mostly used

to make it easier to understand the group action on the PR-trees. Before we proceed to

the next section, we give one more definition. Let Tn,m be the set of all PR-trees which

correspond to m-cells of Kn. Tn,0 is then all PRB-trees corresponding to the vertices of

Kn. As a consequence of what is mentioned above, Tn,m is isomorphic to Qn+1,n−2−m.
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(a) Diagonalized polygon. (b) In every region in 7a one
places one vertex and draws
an edge to all sides of that
region.

(c) The tree which corre-
sponds to the diagonalized
polygon in Figure 7a.

Figure 7: How diagonalized polygons correspond to PR-trees.

4 Group Actions on PR-Trees and Diagonalized Poly-

gons

Consider the dihedral group of order n acting upon the diagonalized n-sided polygons.

Clearly, this action can also be interpreted as an action on the PR-trees with n+2 leaves.

All elements in Dn can be generated by rotations and reflections. The rotation partitions

the set of all PR-trees into orbits in one way and the reflection in an other way.

The rotation ρ : Tn → Tn, easily understood on the polygons, ρ( ) = , can be

interpreted on the PR-trees as moving every outer vertex to the place of the outer vertex

which is a neighbour to the original vertex in a counter-clockwise direction such that all

connections between the vertices are preserved, i.e. consider the PRB-tree in Figure 8a,

then a rotation as dictated by ρ maps v1 7→ r, v2 7→ v1, v3 7→ v2, v4 7→ v3, v5 7→ v4 and

r 7→ v5, yielding the tree in Figure 8b.

In appendix A one can find a table of PRB-trees, diagonalized polygons, orbits and

more relevant information about dihedral group actions on PRB-trees with certain num-

ber of leaves. The orbits of the PRB-trees for K5 is given below in table 1. In appendix

B one can find a computer program that generates some of this information.

For K5, there are 4 orbits of the vertices under the action of rotation of lengths 6, 3,

3 and 2, respectively. These orbits, the elements they correspond to, and the labels and
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r

v1 v5v2 v3 v4

(a) PRB-tree with labeled vertices.

r

v1 v5v2 v3 v4

(b) Rotation of the tree in Figure 8a.

Figure 8: The tree to the right is a rotation of the tree to the left. The rotation can
intuitively be understood either by transforming the tree to a diagonalized polygon,
rotate the polygon and transfer back to a tree or by just considering the map v1 7→ r,
v2 7→ v1, v3 7→ v2, v4 7→ v3, v5 7→ v4 and r 7→ v5, which should leave all connections
between the vertices preserved.

colours they are given in this paper can be seen in Table 1. In Table 2 one can find the

orbits of the diagonalized polygons under the action of D6 corresponding to edges of K5.

The same for faces can be found in Table 3.

Table 1: The orbits of the vertices of K5 under the action of rotation, the elements they
correspond to and the labels and colours they are given in this paper.

PRB-trees Fully diagonalized hexagons Labels Colour

{ , } { , } {r1, r2}

{ , , } { , , } {y1, y2, y3}

{ , , } { , , } {b1, b2, b3}

{ , , , { , , , {g1, g2, g3,

, , } , , } g4, g5, g6}

5 Symmetries of K5

Before we proceed to investigating the symmetries of K5, we define a rigid motion. Note

that the definition of a rigid motion may be different in other articles.

Definition 12 (Rigid motion of Rn). A rigid motion of Rn is a composition of reflections

and rotations, fixing the origin, of Rn.

A rigid motion of Rn can be seen as rotations and reflections of an n-dimensional
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Table 2: The orbits of the PR-trees under the action of rotation corresponding to the
edges of K5. In the left column one element of the orbit is visualized. All other elements
in the orbit are rotations of the elements in the left column. The number of such elements
can be found in the column in the middle. In the right column each orbit is labeled
by a specific colour. Note that the colours are chosen arbitrarily and that there is no
connection to the colours in table 1.

Diagonalized hexagon Rotations of the hexagon Colour

6

6

6

3

Table 3: The orbits of all diagonalizations of a hexagon consisting of one diagonal under
the action of D6. These correspond to faces of K5.

Diagonalized hexagon Rotations of the hexagon

6

3

sphere with center at the origin. A rigid motion of a polytope is a rigid motion of Rn such

that all k-cells are mapped to another k-cell. We also define a rigid motion of the set of

all k-cells of a polytope. This is a rigid motion of Rn such that every k-cell is mapped to

another k-cell.

5.1 K5 embedded in a Sphere

Since the associahedron is defined through PR-trees, the D6 action on the PR-trees

as described in section 4 must have a geometric interpretation. We propose that the

group action on the PR-trees with n leaves corresponds to a rigid motion of at least one

realization of Kn. This can easily be shown to be the case for K4. We will now analyze

the symmetries of K5 and show that this is the case for K5.

How different vertices should be connected in order to obtain K5 was explained in

section 3.2. What colour and label each vertex should get when considering dihedral
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group actions are described in table 1. Now, let these vertices be mapped to a sphere in

such a way that the two red vertices are the north and south pole respectively. Place the

blue and yellow vertices on the equator such that the blue and yellow vertices alternate

and that the distance between consecutive vertices is the same. Three green vertices are

then placed on the northern hemisphere in a symmetric way and the same is done for the

remaining three green vertices on the southern hemisphere2. The result one should get is

something like Figure 9.

Figure 9: The coloured vertices placed on a sphere. The colours tell in which orbit the
corresponding PRB-tree lies in when D6 acts upon all PRB-trees with 5 leaves. Note that
the lines in this picture do not represent the way vertices should be connected in order
to obtain K5 but is used to illustrate the symmetric way in which vertices are placed on
the sphere.

From this point is it not hard to connect the vertices with edges in the correct way

as described earlier. The result is K5 since the combinatorial structure is inherent in the
2The PRB-trees corresponding to the green vertices forms an orbit when they are under the action of

rotation. However, these "green" PRB-trees can also be separated in two different orbits if one considers
the action of two rotations. Then these two orbits consist of three elements each, corresponding to the
three elements that are positioned on the north and south pole respectively.
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connections of the vertices. We have now obtained a symmetric version of K5 embedded

in a sphere. This can be seen in Figure 10. In Figure 11 the same realization is done but

here the edges are coloured instead of the vertices according to Table 2.

Figure 10: K5 embedded in a sphere with vertices labeled according to which orbit their
corresponding PRB-tree lies in under action of D6.

5.2 Rigid Motions of K5

We will now move on to investigate some rigid motions ofK5 as it is realized in this paper.

Consider a rotation of 2π/3 radians in anti-clockwise direction with respect to Figure 10

of K5 which fixes r1 and r2. This is a rigid motion φ2π/3 : S → S whose mapping can be

seen on the vertices like:

(r1, r2, y1, y2, y3, b1, b2, b3, g1, g2, g3, g4, g5, g6)

7→ (r1, r2, y2, y3, y1, b2, b3, b1, g5, g6, g1, g2, g3, g4)

(1)
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Figure 11: The edges of K5 coloured as in Table 2.

The reflection through the equatorial plane forms a rigid motion Φeq : S → S which maps

the vertices in the following way:

(r1, r2, y1, y2, y3, b1, b2, b3, g1, g2, g3, g4, g5, g6)

7→ (r2, r1, y1, y2, y3, b1, b2, b3, g4, g5, g6, g1, g2, g3)

(2)

Lastly, consider the reflection through the plane crossing r1, r2, g3 and g6. This plane

is perpendicular to the equatorial plane. The reflection is a rigid motion Φorth : S → S

which maps the vertices according to:

(r1, r2, y1, y2, y3, b1, b2, b3, g1, g2, g3, g4, g5, g6)

7→ (r1, r2, b1, b3, b2, y1, y3, y2, g5, g4, g3, g2, g1, g6)

(3)

5.3 Symmetries of K5 as Described by Groups

We would like to show that the action of the dihedral group on the PR-trees could be

interpreted as a rigid motion of some realization of the associahedron. In Lemma 1 we
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show that this is the same as just considering the dihedral group action on the PRB-trees

and the way in which this affects the associahedron.

Lemma 1. Let C(Kn) be a realization of Kn as a convex hull of the set of vertices

V (Kn) interpreted as points in C(Kn), then the action of Dn+1 on Tn corresponds to a

rigid motion of C(Kn) if and only if the action of Dn+1 on Tn,0 corresponds to a rigid

motion of V (Kn).

Proof. Let ρ be the action of rotation and ξ be the action of reflection. Then all elements

of Dn+1 can be generated by ρ and ξ and it is sufficient to investigate the action of these

two elements. Let Ck be a k-cell of C(Kn) and D(Ck) the corresponding diagonalized

polygon. From the definition of Kn, D(Ck) can be seen as all diagonals shared by those

D(Ck−1) such that Ck−1 ⊂ Ck. This means that the order relation is preserved in the poset

Qn+1 under the action of Dn+1, i.e. ρ(D(Ck−1)) � ρ(D(Ck)) and ξ(D(Ck−1)) � ξ(D(Ck)).

Hence, all cells in Kn are connected in the same way as before the group action.

Since the position of a k-cell can be reduced to the positions of all vertices V (Kn),

a rigid motion of the vertices as dictated by the action of Dn must also be a rigid

motion of all other cells if the rigid motion is defined separately for all k-cells. Since

the combinatorial structure of Kn is preserved under the action of the dihedral group,

Lemma 1 follows.

Lemma 1 says that the group action on the PR-trees leaves the ordering unchanged,

and hence, Dn+1 action on Tn leaves the combinatorial structure of Kn preserved. Fur-

thermore, since the positions of all cells in a realization of Kn as a convex hull of a set

of points is determined only by the vertices, the dihedral group action on the vertices

determines the way other cells are effected by the group action.

Remark. Lemma 1 also applies to the realization of K5 embedded in a sphere as described

in section 5.1. This is true because the way different cells are built up in the realization

are defined solely by the vertices.

We are now in position to present the main result of this article.
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Theorem 1. Let ρ be the action of rotation and ξ the action of reflection on T5 as dictated

by the dihedral group. Let C(K5) be the realization of K5 as described in section 5.1 and

V (K5) the vertices in this realization. Let ψ : T5 → C(K5) be a map which maps every

PR-tree to the corresponding cell of K5. The action of D6 on T5 is then equivalent to rigid

motions of C(K5), more precisely:

T5 C(K5)

T5 C(K5)

ψ

ρ Φeq◦φ2π/3

ψ

T5 C(K5)

T5 C(K5)

ψ

ξ Φorth◦Φeq

ψ

Proof. According to Lemma 1 the theorem follows if one can show that the rotation ρ

and reflection ξ maps each element j in Q6,3 to another element i in Q6,3 such that the

corresponding vertex to j in C(K5) is mapped by the rigid motion to the corresponding

vertex of i. By function composition of the rigid motions defined in section 5.2 this can

easily be checked to be true. The function composition of Φeq and φ2π/3 is seen on the

vertices like:
(r1, r2, y1, y2, y3, b1, b2, b3, g1, g2, g3, g4, g5, g6)

7→ (r1, r2, y2, y3, y1, b2, b3, b1, g5, g6, g1, g2, g3, g4)

7→ (r2, r1, y2, y3, y1, b2, b3, b1, g2, g3, g4, g5, g6, g1)

Which is equivalent to the way ρ maps the corresponding PRB-trees or fully diagonalized

polygons. This equivalence can be realized if one understands Table 1. Now, consider the

function composition of Φorth and Φeq, this one is seen on the vertices like:

(r1, r2, y1, y2, y3, b1, b2, b3, g1, g2, g3, g4, g5, g6)

7→ (r1, r2, b1, b3, b2, y1, y3, y2, g5, g4, g3, g2, g1, g6)

7→ (r2, r1, b1, b3, b2, y1, y3, y2, g2, g1, g6, g5, g4, g3)

Which is equivalent to reflecting the PRB-trees or fully diagonalized polygons.

A question of interest at this point is what type of rigid motion of K5 the action of
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different elements of D6 correspond to. In Table 4 this information can be found. Note

that all rigid motions can be explained by compositions of some other rigid motions.

Furthermore, note that every rigid motion is a composition of three different rigid motions,

each chosen from the three sets: {Φ0
orth,Φorth}, {Φ0

eq,Φeq} and {φ0
2π/3, φ2π/3, φ

2
2π/3}, where

Φ0
orth, Φ0

eq and φ0
2π/3 correspond to not doing anything and therefore these are not spelled

out. Since each element is chosen from all three "categories", there is a total of 2·2·3 = 12

rigid motions corresponding to each of the twelve elements of D6.

Table 4: In the left column the different elements of D6 are listed. In the right column
we show the effect this element have on K5 when the element acts on T5, i.e. the poset
which is isomorphic to the face poset of K5.

Element in D6 Corresponding rigid motion of K5

e No effect on K5

ρ Φeq ◦ φ2π/3

ρ2 φ2
2π/3 = φ4π/3

ρ3 Φeq

ρ4 φ2π/3

ρ5 Φeq ◦ φ2
2π/3 = Φeq ◦ φ4π/3

ξ Φorth ◦ Φeq

ξρ Φorth ◦ φ2π/3

ξρ2 Φorth ◦ Φeq ◦ φ4π/3

ξρ3 Φorth

ξρ4 Φorth ◦ Φeq ◦ φ2π/3

ξρ5 Φorth ◦ φ4π/3
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6 Further Research

There are several questions related to our study that might be interesting to address.

Since we made a sphere embedding of K5 which preserves the symmetries described by

D6, it is natural to ask if Kn can be embedded in a hypersphere in a similar manner.

It would be interesting if the procedure in which we embedded K5 in a sphere could be

formalized and applied to Kn in such a way that Theorem 1 holds.

Another question of interest is if there exists a formula or easy procedure which can

determine the lengths of all orbits of the PR(B)-trees under the action of rotation. If this

can be found, then one can ask how this is related to the associahedra.

19



References
[1] Müller-Hoissen F, Marcel Pallo J, Stasheff J. Associahedra, Tamari Lattices and

Related Structures. Basel: Birkhäuser; 2012.

[2] Stasheff J. (1963). Homotopy Associativity of H-spaces. In: Transactions of the Amer-
ican Mathematical Society.

[3] Lee, C. W. (1989). The associahedron and triangulations of the n-gon. European
Journal of Combinatorics, 10(6), 551-560.

[4] Loday, J. L. (2005). The multiple facets of the associahedron. preprint.

[5] Devadoss, S. L., Forcey, S., Reisdorf, S., Showers, P. (2015). Convex polytopes from
nested posets. European Journal of Combinatorics, 43, 229-248.

[6] Devadoss, S. L. (2009). A realization of graph associahedra. Discrete Mathematics,
309(1), 271-276.

[7] Benedetti B., Delucchi E., Moci L. (2015). Combinatorial Methods in Topology and
Algebra. Paris: Springer.

20



A Orbits of Diagonalized Polygons and PR-Trees Un-

der the Action of Dn

In Table 5 one can find information about the orbits of the PRB-trees under the action

of rotation. The number of PRB-trees with n leaves is the (n + 1):th Catalan number.

The number of orbits is also an identifiable sequence [7].

Note that the lengths of the orbits always divides the order of the group which acts on

the elements. This is known as the orbit-stabilizer theorem and is related to Lagrange’s

theorem which we described in section 2.1. This together with the fact that the rotation

of a diagonalized polygon cannot be itself implies that whenever the number of sides of

the polygon is a prime number, then all orbits will have that prime number as length.

Table 5: Orbits of PRB-trees under the action of rotation ρ and their relation to the
associahedra.

n (dimension) Number of PRB-trees Lengths of the orbits Number of orbits

1 (K3) 2 [2] 1

2 (K4) 5 [5] 1

3 (K5) 14 [2, 3, 3, 6] 4

4 (K6) 42 [7, ..., 7︸ ︷︷ ︸
6

] 6

5 (K7) 132 [4, ..., 4︸ ︷︷ ︸
5

, 8, ..., 8︸ ︷︷ ︸
14

] 19

6 (K8) 429 [3, 3, 9, ..., 9︸ ︷︷ ︸
47

] 49

7 (K9) 1430 [5, ..., 5︸ ︷︷ ︸
14

, 10, ..., 10︸ ︷︷ ︸
136

] 150

8 K10 4862 [11, ..., 11︸ ︷︷ ︸
442

] 442
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B Computer Program Generating the Orbits of Qn+3,n

Under the Action of Rotation

This program, written in Python 3.6.4rc1, calculates all possible diagonalized polygons

and their orbits under the action of the dihedral group. For large3 n this program is very

slow. The program is split up into two modules.

def l i s t_ in_other ( l i s t 1 , l i s t 2 ) :

’ r e tu rn s True i f l i s t 1 i s in l i s t 2 e . g . [ 2 , 3 , 4 ] i s in [ 1 ,

2 , 3 , 4 , 13 , 0 ] ’

for i in range (0 , len ( l i s t 2 ) − len ( l i s t 1 ) ) :

for j in range ( len ( l i s t 1 ) − 1 , len ( l i s t 2 ) ) :

i f l i s t 2 [ i : j ] == l i s t 1 :

return True

break

else :

continue

else :

return False

def l i s t_o f_d iagona l s ( l ength ) :

’ Return a l i s t o f a l l d i agona l s in an ( l ength + 2)−gon ’

t h e_ l i s t = [ ]

b a s i c_ l i s t = [ x for x in range (0 , l ength + 2) ]

for i in range (0 , l ength + 1) :

for j in range (1 , l ength + 3) :

element = ba s i c_ l i s t [ i : j ]

3"large" is quite comparative.
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i f j > i and len ( element ) <= length :

t h e_ l i s t . append ( element )

th e_ l i s t = [ x for x in t h e_ l i s t i f len ( x ) != 1 ]

return t h e_ l i s t

class PolygonDiagona l i zat ion :

def __init__( s e l f , d i agona l s ) :

s e l f . d i agona l s = [ sorted ( x ) for x in d iagona l s ] #The

c l a s s input shou ld be a l i s t o f d i a gona l s

s e l f . s i z e = len ( s e l f . d i agona l s ) + 3

s e l f . v e r t i c e s = [ x for x in range (0 , s e l f . s i z e ) ]

edges = [ ]

for ver tex in s e l f . v e r t i c e s :

i f [ ve r tex ] + [ ver tex + 1 % s e l f . s i z e ] not in edges

or [ ve r tex + 1 % s e l f . s i z e ] + [ ver tex ] not in

edges :

edges . append ( [ ver tex ] + [ ver tex + 1 ] ) #Makes

l i s t o f edges

s e l f . edges = edges

def d iagona l_equa l i ty ( s e l f , d1 , d2 ) :

’ Returns True i f two d iagona l s in a polygon are equal ’

i f sorted ( d1 ) == sorted ( d2 ) :

return True

e l i f sorted ( d1 + d2 ) == s e l f . v e r t i c e s :

return True

else :
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return False

def diagonal_replacer_1 ( s e l f , d1 ) :

’ For a d iagona l in a polygon , t h i s func t i on r e tu rn s the

other r ep r e s en t a t i on o f the d iagona l ’

d2 = sorted ( [ x for x in s e l f . v e r t i c e s i f x not in d1 ] )

return d2

def diagonal_replacer_2 ( s e l f , d1 ) :

’ For any d iagona l in a polygon , t h i s func t i on r e tu rn s a

s p e c i f i c r ep r e s en t a t i on ’

d2 = s e l f . d iagonal_replacer_1 ( d1 )

i f len ( d1 ) == len ( d2 ) :

i f min( d1 ) < min( d2 ) :

return d1

else :

return d2

e l i f len ( d1 ) < len ( d2 ) :

return d1

else :

return d2

def __repr__( s e l f ) :

return ’@ ’ + str ( s e l f . d i agona l s ) + ’ ! ’

def __eq__( s e l f , o ther ) :

s e l f_d i agona l s = [ s e l f . d iagonal_replacer_2 (x ) for x in

s e l f . d i agona l s ]
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other_diagonals = [ other . d iagonal_replacer_2 (x ) for x in

other . d i agona l s ]

i f sorted ( s e l f_d i agona l s ) == sorted ( other_diagonal s ) :

return True

else :

return False

def __ne__( s e l f , o ther ) :

s e l f_d i agona l s = [ s e l f . d iagonal_replacer_2 (x ) for x in

s e l f . d i agona l s ]

other_diagonals = [ other . d iagonal_replacer_2 (x ) for x in

other . d i agona l s ]

i f sorted ( s e l f_d i agona l s ) == sorted ( other_diagonal s ) :

return False

else :

return True

def r o t a t i on ( s e l f ) :

’ Generates a new ob j e c t cor re spond ing to the r o t a t i o n s

o f s e l f ’

new_diagonals = [ ]

for d iagona l in s e l f . d i agona l s :

new_diagonal = [ ]

for x in d iagona l :

new_diagonal . append ( ( x + 1) % s e l f . s i z e )

new_diagonals . append ( sorted ( new_diagonal ) )

return PolygonDiagona l i zat ion ( new_diagonals )
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def diagonal_in_other ( s e l f , d1 , d2 ) :

’ Returns True i f d2 en c l o s e s d1 ’

i f l i s t_ in_other (d1 , d2 ) \

or l i s t_ in_other (d1 , s e l f . d iagonal_replacer_1 (d2 ) ) \

or l i s t_ in_other ( s e l f . d iagonal_replacer_1 ( d1 ) , s e l f .

d iagonal_replacer_1 ( d2 ) ) \

or l i s t_ in_other ( s e l f . d iagonal_replacer_1 ( d1 ) , d2 ) :

return True

else :

return False

def d i agona l_ in t e r s e c t ( s e l f , d1 , d2 ) :

’ Returns True i f d1 and d2 i n t e r s e c t each other ’

d1 = s e l f . d iagonal_replacer_2 ( d1 )

d2 = s e l f . d iagonal_replacer_2 ( d2 )

cut = [ d iagona l for d iagona l in d1 i f d iagona l in d2 ]

i f cut != [ ] and cut != d1 and cut != d2 :

return True

e l i f s e l f . d iagona l_equa l i ty (d1 , d2 ) == True :

return True

else :

return False

def diagonal_switch ( s e l f , d1 ) :

’ Returns a new ob j e c t with the d iagona l d1 changed ’

diagonals_1 = sorted ( [ d iagona l for d iagona l in s e l f .

d i agona l s i f not s e l f . d iagona l_equa l i ty ( diagonal , d1 )

] )
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l i s t_ = l i s t_o f_d iagona l s ( s e l f . s i z e − 2)

for diagonal_1 in l i s t_ :

for diagonal_2 in diagonals_1 :

i f s e l f . d i agona l_ in t e r s e c t ( diagonal_1 ,

diagonal_2 ) :

break

else :

i f not s e l f . d iagona l_equa l i ty (d1 , diagonal_1 ) :

diagonals_1 . append ( diagonal_1 )

break

return PolygonDiagona l i zat ion ( diagonals_1 )

def ro ta t i on_cyc l e ( s e l f ) :

’ Generates a l i s t o f a l l r o t a t i o n s o f s e l f ’

a = s e l f

l i s t_ = [ ]

while l i s t_ . count ( a ) < 1 :

l i s t_ . append ( a )

a = a . r o t a t i on ( )

for a in l i s t_ :

for b in l i s t_ :

i f l i s t_ . index ( a ) != l i s t_ . index (b) :

i f a == b :

l i s t_ . remove (b)

return l i s t_

def diagona l_switches ( s e l f ) :
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’ Generates a l i s t o f ob j e c t s cor re spond ing to a l l new

d i a g ona l i z a t i o n s c rea ted by changing d iagona l s ’

l i s t_ = [ ]

for d iagona l in s e l f . d i agona l s :

l i s t_ . append ( s e l f . d iagonal_switch ( d iagona l ) )

for a in l i s t_ :

for b in l i s t_ :

i f l i s t_ . index ( a ) != l i s t_ . index (b) :

i f a == b :

l i s t_ . remove (b)

return l i s t_

def r o t a t i ona l_equa l i t y ( s e l f , o ther ) :

’ Returns True i f other i s a r o t a t i on o f s e l f ’

r o t = other . r o ta t i on_cyc l e ( )

i f s e l f in ro t :

return True

else :

return False

from c la s s_po lygon_diagona l i za t ion import ∗

n = int ( input ( ’ Dimension : ’ ) )

a = PolygonDiagona l i zat ion ( [ range (0 , m) for m in range (2 , n + 2)

] )

a l l_ = [ element for element in a . ro ta t i on_cyc l e ( ) ] #Li s t o f a l l
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d i a g on a l i z a t i o n s

o r b i t s = [ a . r o ta t i on_cyc l e ( ) ] #Li s t o f a l l o r b i t s

orbits_0 = [ element for element in o r b i t s ]

k = 0

while k == 0 :

new_cycle_length = [ ] #Determines when to s top the loop

for cy c l e in orbits_0 : #Looking at each o r b i t s e p a r a t e l y

l a s t_in_cyc le = cyc l e [ len ( c y c l e ) − 1 ] #Def in ing the l a s t

e lement in the o r b i t

new_cycle = last_in_cyc le . d iagona l_switches ( ) #Creat ing

a l i s t o f a l l e lements \

#which can be ob ta ined from the l a s t e lement o f the

o r b i t by f l i p p i n g one d iagona l ( l i s t = new_cycle )

for cycle_0 in o r b i t s : #Removing each element from

new_cycle which a l r eady i s in o r b i t s

for element in cycle_0 :

i f element in new_cycle :

new_cycle . remove ( element )

#Removing d u p l i c a t e s in new_cycle

new_cycle_copy = [ element for element in new_cycle ]

for element_1 in new_cycle_copy :

for element_2 in new_cycle_copy :

i f element_1 != element_2 and element_1 .

r o t a t i ona l_equa l i t y ( element_2 ) :

i f element_2 and element_1 in new_cycle :

new_cycle . remove ( element_2 )

#End of dup l i c a t i on−remove
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i f len ( new_cycle ) == 0 : #Determines when to s top the

loop

new_cycle_length . append (0)

else :

new_cycle_length . append (1)

#Appending :

for element in new_cycle : #Al l e lement which are not in

a l l_ or o r b i t s

ro t = element . ro ta t i on_cyc l e ( ) #Cycle o f a l l

r o t a t i o n s f o r a l l new d iagona l c on f i g u r a t i on s

o r b i t s . append ( ro t ) #Appending new o r b i t to o r b i t s

for element_0 in ro t : #Appending new element to a l l_

al l_ . append ( element_0 )

i f 1 not in new_cycle_length : #Determines when to s top the

loop

k = 1

orbits_0 = [ element for element in o r b i t s ]

#Prin t ing out the data

print ( )

print ( ’The number o f f u l l y d i agona l i z ed polygons with %d s i d e s :

’ % (n + 3) )

print ( len ( a l l_ ) )

print ( )

o rb i t s_ l eng ths = sorted ( [ len ( element ) for element in o r b i t s ] )

print ( ’ Orbit l eng th s : ’ )

for element in o rb i t s_ l eng ths :

print ( element , end = ’ , ’ )
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print ( )

print ( )

print ( ’The number o f o r b i t s : ’ )

print ( len ( o r b i t s ) )

C Exact Coordinates for the Sphere-embedding of K5

In Table 6 one can find the exact coordinates of the vertices of K5 embedded in a sphere

as explained in section 5.1.

Table 6: Spherical coordinates for the realization of K5 as described in section 5.1.

Vertex Spherical coordinates

r1 (1, 0,−π
2
)

r2 (1, 0, π
2
)

y1 (1, π
6
, 0)

y2 (1, 5π
6
, 0)

y3 (1, 3π
2
, 0)

b1 (1, π
2
, 0)

b2 (1, 7π
6
, 0)

b3 (1, 11π
6
, 0)

g1 (1, 0, π
4
)

g2 (1, 2π
3
, π

4
)

g3 (1, 4π
3
,−π

4
)

g4 (1, 0, π
4
)

g5 (1, 2π
3
,−π

4
)

g6 (1, 4π
3
, π

4
)
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