
Introducing Latitude-Dependent Turbulent
Magnetic Diffusivity in a Solar Dynamo Model

Alexandra Berg
alexandra.berg@live.com

under the direction of
Bidya Binay Karak

NORDITA (Nordic Institute for Theoretical Physics)

Research Academy for Young Scientists
July 8, 2015



Abstract

As space technology and communication can be greatly affected by solar activ-

ity, it is of importance to understand the phenomenas’ underlying cause; solar

magnetodynamics. Several models aiming to describe solar magnetodynamics cur-

rently exist, of which one is the flux transport dynamo model. This model and

its two constituent equations form the basis of SURYA, a Fortran program aimed

at modeling the 2D spaciotemporal evolution of the solar magnetic fields. In this

study, the toroidal turbulent magnetic diffusivity, a variable present in one of the

two flux transport dynamo equations, is modified to be latitudinally dependent.

Results indicate that such a program modification yields more accurate and rep-

resentative magnetic field data, albeit at a considerably greater run time than the

original, unmodified SURYA program. The results also highlight the importance of

considering toroidal turbulent diffusivity as intrinsically dependent upon latitude.
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1 Introduction

Understanding the sun’s magnetodynamics provides vital insight into numerous

secondary solar activities, such as coronal mass ejection, solar flares and solar

storms [1]. A detailed understanding of these phenomena is not only of theoretical

value to the field of astrophysics, but also of high practical value to fields of space

technology and communication [1, 2].

Several theoretical models of the sun’s magnetodynamics already exist; within

one subset of solar models, the kinematic models, is the so-called flux transport

dynamo model [3]. This model is the basis of SURYA, a Fortran program aimed at

modeling the 2D spaciotemporal evolution of the large-scale magnetic solar fields.

Certain approximations and simplifications of the variables involved are made in

the SURYA program; one such affected variable is the toroidal turbulent magnetic

diffusivity [4].

The aim of this study is firstly to develop the original SURYA program by

making this variable, the toroidal turbulent magnetic diffusivity, dependent upon

the latitudinal position θ. Secondly, the aim is to investigate subsequent effects on

the modeling of the large-scale solar magnetic field with the modification.

2 Theoretical Overview

2.1 Observation

First regularly documented in 1749 by the Zürich Observatory, sunspots are one of

the most extensively catalogued solar phenomena, making them one of the primary

sources of our knowledge on the sun’s magnetodynamics [2].
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Sunspot cycle periods span approximately eleven years, during which sunspots

first appear at a latitude of forty degrees N/S, and then migrate equatorwards

to disappear at the period’s end. Sunspots often appear in tandem on the same

hemisphere, where members of a pair have opposite polarities; they are essentially

coupled areas where magnetic fields enter and exit, respectively. After each sunspot

cycle period, the polarity is reversed within the sunspot pairs [1, 2, 5].

Figure 1: Magnetic fields of the sunspot cycle

When the sun was discovered to be prone to magnetodynamic activity, it was

quickly extrapolated that the sunspots and sunspot cycles were direct consequences

of a greater cycle. This cycle, the magnetic cycle, spans 22 years during which the

involved magnetic fields are continuously generated and plied through a so-called

dynamo process [1, 2].

2.2 Hydromagnetic Dynamo Theory

Magnetic fields are initially generated as a result of plasma movement. As quasi-

neutral, plasma contains equal amounts of positively and negatively charged par-
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ticles per volume unit; its magnetic state is therefor initially B = 0. However, due

to small fluctuations in the charge distribution, so-called magnetic seed fields are

formed, which in turn give rise to large scale magnetic fields [5]. This process is

primarily governed by the two magnetohydrodynamic (MHD) equations known as

the induction equation,

∂B
∂t

= ∇× (v×B)−∇× η(∇×B) (1)

in which B is the magnetic field, v is the flow velocity and η is the turbulent

magnetic diffusivity, and the motion equation. From the induction equation (see

Equation 1) it is clear that if no fluid motion is present (v = 0), then the magnetic

field is not actively sustained; it will decay, albeit over great timescales [5].

It is therefore inferable that the solar magnetism, which has lasted over con-

siderable time scales, must be continuously generated. The theory that describes

both the initial and the continuous generation, the hydromagnetic dynamo theory,

is based on the motion equation and the induction equation. However, depend-

ing on to what extent one chooses to consider either equation, the hydromagnetic

dynamo theory is divided into two separate areas [5, 6].

The first area entails non-linear dynamos, in which both equations are con-

sidered. There is therefore a loop of affect between the magnetic fields’ Lorentz

forces and the fluid velocities. In the second area however, known as kinematic

dynamos, the motion equation is neglected. Plasma flow velocities are considered

predetermined and virtually unaffected by the magnetic fields [6, 7].

Non-linear dynamos yield coupled non-linear equations, which are computa-

tionally difficult to solve, whilst kinematic dynamos yield simpler, more readily
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solvable linear equations [7]. Despite the solar magnetic dynamo process being

an intrinsically non-linear phenomenon, only kinematic dynamo models will be

considered in this study.

2.3 Kinematic Dynamos and Magnetic Cycle Generation

In keeping to kinematic dynamos only, i.e. assuming that all involved fluid veloc-

ities are given, one can now proceed to explain the continuous generation of the

magnetic fields and cycle. The total solar magnetic field can be considered to be

composed of a poloidal and toroidal magnetic field:

B = Bt + Bp

were the toroidal field Bt = Bφeφ lies in the azimuthal direction, and the poloidal

field Bp = Brer + Bθeθ = ∇ × [A(r, θ)eφ] (where A is the poloidal field vector

component) lies in the poleward direction [5].

Figure 2: Half a magnetic cycle; the generation of poloidal and toroidal fields

According to Parker’s turbulent dynamo theory [5], which delineates the con-

tinuous generation of magnetic fields and cycles, the first step of cycle generation
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involves the global poloidal fields generated earlier (see Section 2.2). The field

lines of these global poloidal fields are essentially dragged by the solar differential

rotation, producing toroidal fields that move anti-parallel to each other in either

hemisphere (see Subfigure 2a). This process of magnetic field generation powered

by the solar differential rotation is known as the omega effect [5].

The second step in continuous magnetic field generation involves the turbulent

convective motions of the solar plasma. Due to the Coriolis effect, rising and sinking

plasma turbulences start rotating, resulting in helical turbulence.The helical tur-

bulence twists the toroidal field lines, which (due to the toroidal fields’ anti-parallel

nature and the chirality of the helical turbulence) gives rise to small poloidal fields

with same magnetic sense (see Subfigure 2b). This process of magnetic field gen-

eration powered by the helical turbulence is known as the alpha effect. The small

poloidal fields eventually combine to give rise to global poloidal fields, with oppo-

site magnetic sense to the initial global poloidal field (see Subfigure 2c). Thus, half

a magnetic cycle has passed [5].

One can through the steps of half a magnetic cycle explain the sunspot cycle

process. During the initial phase of the magnetic cycle, very few small poloidal

fields exist. As sunspots are essentially the entries and exits of the small poloidal

magnetic fields, there are consequently few sunspots present. However, as helical

turbulence gives rise to small poloidal fields, sunspots are formed; the sunspot cycle

reaches a maximum. Meanwhile, the solar differential rotation drags the sunspot

pairs, producing the characteristic slanted equatorward migration (see Figure 1).

As the small poloidal fields combine into global poloidal fields, the sunspot cycle

reaches yet another minimum, where after the hemispherical and sunspot polarities

are reversed in concordance to the new global poloidal field direction [2, 5].
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2.4 Flux transport dynamo model

One kinematic dynamo model is the flux transport dynamo, which models the spa-

ciotemporal evolution of the sun’s large scale magnetic fields [3, 7]. More specifi-

cally, the flux transport dynamo model is characterized by assumptions pertaining

to the meridional plasma flow. Firstly, the model assumes that the equatorward

sunspot movement is driven by a meridional flow in the sun. Secondly, it assumes

that the magnetic cycle’s period is primarily determined by the velocity of the

meridional flow [3, 6]. The flux transport dynamo model also accounts for the tur-

bulent magnetic diffusivity, considered specific to the toroidal and poloidal fields

respectively [3, 4, 6].

In essence, the flux transport dynamo model is summarized through the follow-

ing two equations describing the change in the poloidal and toroidal fields’ vector

components A and B over time.

∂A
∂t

+
1

r sin θ
(v · ∇)(r sin θA) = ηp(∇2 − 1

r sin θ
)A + αB (2)

∂B
∂t

+
1

r
[
∂(rvrB)

∂r
+
∂(vθB)

∂θ
] = ηt(∇2− 1

r sin θ
)B+r sin θ(Bp·∇)Ω+

1

r

dηt
dr

∂(rB)

∂r
(3)

The terms 1
r sin θ

(v · ∇)(r sin θA) and 1
r
[∂(rvrB)

∂r
+ ∂(vθB)

∂θ
] are the meridional flow

transport terms of the respective magnetic fields, αB and r sin θ(Bp · ∇)Ω the

source terms for alpha- and omega- effects on the respective magnetic fields, and

ηp(∇2 − 1
r sin θ

)A and ηt(∇2 − 1
r sin θ

)B the terms corresponding to the effects of

turbulent magnetic diffusion (ηt and ηp) in either magnetic field. The term 1
r
dηt
dr

∂(rB)
∂r

7



represents how toroidal turbulent magnetic diffusivity ηt varies with depth r, the

only dimension on which ηt is currently assumed dependent upon [3, 4].

2.5 SURYA Program and Modifications

The SURYA program is a Fortran code aimed at simulating the solar magnetic

activity in two dimensions. As it is based entirely on the flux transport dynamo

model, it assumes a kinematic solar dynamo process and accounts for meridional

circulation (see section 2.4) [4].

In the original SURYA code, the evolution of the toroidal and poloidal fields is

defined according to the flux transport dynamo equations; 2 and 3. In the case of

the toroidal magnetic fields, the corresponding turbulent magnetic diffusivity ηt is

defined as

ηt(old)(r) = ηRZ +
ηSCZ1

2
[1 + erf(

r − r′BCZ
dt

)] +
ηSCZ

2
[1 + erf(

r − rTCZ
dt

)] (4)

were ηRZ , ηSCZ1 and ηSCZ are pre-defined parameter values [4] of the turbulent

magnetic diffusivity at different areas of the sun. r′BCZ and rTCZ are in turn the

radii corresponding to the above mentioned areas, and dt is the time step of the

program [4].

Prior to this study, a currently unpublished investigation by Bidya Binay Karak

determined the numerical treatments necessary to make the current toroidal tur-

bulent diffusivity ηt(r) r- and θ-dependent. It was determined that the relation

between ηt(new)(r, θ) and ηt(old)(r) is as follows
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ηt(new)(r, θ) =
ηt(old)(r)

1 + B2 (5)

were B is the toroidal magnetic field. It was also determined that in order to

account for the new θ-dependency of the toroidal turbulent diffusivity, the equation

governing the toroidal field evolution would have the following additional term.

1

r2 sin θ

∂ηt
∂θ

∂(sin θB)

∂θ
(6)

Hence, the necessary modifications of the SURYA code needed to make the toroidal

turbulent diffusivity r- and θ-dependent (the aim of this study) entail the redefi-

nition of ηt

ηt(new)(r, θ) =
ηRZ + ηSCZ1

2
[1 + erf(

r−r′BCZ
dt

)] + ηSCZ
2

[1 + erf( r−rTCZ
dt

)]

1 + B2 (7)

and the modification of the toroidal field evolution

∂B
∂t

+
1

r
[
∂(rvrB)

∂r
+
∂(vθB)

∂θ
] =

ηt(∇2 − 1

r sin θ
)B + r sin θ(Bp · ∇)Ω +

1

r

dηt
dr

∂(rB)

∂r
+

1

r2 sin θ

∂ηt
∂θ

∂(sin θB)

∂θ

(8)

as shown above. Subsequent, indirect modifications to the SURYA code involve

structural changes to accommodate changes in numerical and temporal dependen-

cies of various variables.
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3 Method

3.1 Mathematical Procedure

The mathematical procedures conducted in this study revolve around the adaption

and integration of the previously determined expressions 7 and 8 for r- and θ-

dependent toroidal diffusivity into the program framework of SURYA. Firstly, the

new expression 8 for the toroidal magnetic field’s evolution is converted to spherical

coordinate form. The resulting equation is then solved on the form

∂B
∂t

= [Nr +Nθ]B +Q (9)

were Nr and Nθ represent the r- and θ-dependent terms respectively, and Q the

omega source term r sin θ(Bp · ∇)Ω. Secondly, the resulting terms are converted

through either previously established difference schemes [2] or, in the case of new

terms, difference schemes selected in this study. The resulting equations are orga-

nized on the form

−4 t

2
NrB

m
i,j = a(i, j)Bm

i−1,j + b(i, j)Bm
i,j + c(i, j)Bm

i+1,j (10)

−4 t

2
NθB

m
i,j = d(i, j)Bm

i−1,j + e(i, j)Bm
i,j + f(i, j)Bm

i+1,j (11)

were the coefficients a(i, j) through f(i, j) constitute the new SURYA code matrix

equation coefficients of the toroidal magnetic field. See appendix A for explicit

details.
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3.2 Programming Procedure

Direct changes to pre-existing code consist of modifications to the toroidal fields

matrix coefficient block, and the program definition of toroidal diffusivity. Struc-

tural changes to the SURYA code include remodeling the program to accommodate

the direct or indirect time dependencies of the modified matrix coefficients, toroidal

diffusivity and diffusivity-dependent functions. See appendix B for explicit details.

3.3 Analytical Procedure

A comparative study of the modified SURYA code in relation to the original code

will be conducted, where the two programs are run with the same initial data

and identical settings. The comparative procedure with which the results will be

analyzed consists of two separate factions.

The first analysis will judge if the results of the modified SURYA code meet the

elementary criteria of solar dynamo models, i.e. if the results accurately portray the

basic documented behavior of sunspot cycles. The phenomena checked for include

an eleven year sunspot cycle period, a tilted equatorward drift of sunspots over

time and cyclic polarity reversal.

The second, perhaps less trivial analysis has as purpose to judge the relative

quality of the modified SURYA code, in terms of overall performance.

4 Results

The data shown is from the original and modified SURYA codes regarding the

spaciotemporal evolution of the solar magnetic fields and sunspots.
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Figure 3: Theoretical sunspot eruptions; red corresponds to negative polarity

Figure 3 shows the appearance of sunspots, were red and black correspond to

different hemispherical polarities, at different latitudes as a function of time in

years. Figure 4 shows the magnetic fields, were the color scheme and intensity

corresponds to magnetic polarity and relative strength, over the latitudes as a

function of time in years.
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Figure 4: Theoretical radial magnetic fields
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5 Discussion

5.1 Result Analysis

In terms of fulfilling the basic criteria imposed on any solar dynamo model, the

modified SURYA code overall succeeded. The subfigure 3b seems ambiguous in

sunspot period length, as the first period (15 years) seems to compound with the

second period (five years) to yield two periods of appropriate lengths. However,

the subfigure 4b, which models the magnetic fields that correspond to the sunspot

cycles, gives correct period lengths of approximately eleven years. Additionally,

both subfigures of the modified SURYA code show clear tilted equatorward migra-

tions of sunspots over time. Finally, hemispherical and sunspot polarity reversal

is observed quite clearly in both graphs, with a magnetic cycle spanning 22 years.

In conclusion, the modified SURYA code is deemed acceptable as a solar dynamo

model.

Further comparison of the original and modified SURYA code yield interesting

observations. Firstly, one of the most prominent features of the modified SURYA

code is the relative weakness of the magnetic fields, as seen when comparing Sub-

figures 4a and 4b. This is also coupled with a shift in the central focus of the

polar regions, making the total magnetic regions of the each sunspot period (the

combined blue and yellow area per 11 year period) approach a more centered,

slanted and "sunspot"-like appearance in comparison to the original model. Sec-

ondly, there is a very interesting break in symmetry; as seen in Figure 4, the original

SURYA code yields highly or completely symmetrical models, whilst the modified

SURYA code yields more complex hemispherical representations. Thirdly, as an

extension of the previous point, the turbulent behaviors exhibited by Figure 4 dif-
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fer markedly. Whilst the original SURYA code yields slight disturbances between

each polarity shift, the turbulences at the corresponding points in the modified

SURYA code converge into strongly focused, organized secondary magnetic fields.

These features, the relatively weaker, more centralized and slanted magnetic fields,

the break in symmetry and the appearance of secondary magnetic fields combine

to form a more complex and representative picture of solar activity. Thus, in cer-

tain aspects, the modified SURYA code is deemed more accurate than the original

program.

5.2 Flaws and Considerations

Despite the positive results, their are certain issues to address. The modified

SURYA code was found to be computationally intensive, with a run time 10 to 14

times greater than the original code. To what extent this was due to improperly

modified code or some fundamental issue pertaining to increased time dependency

of several variables is undetermined in this study. However, it is still necessary to

discuss the relations between the gains in accuracy and loss of efficiency. Although

enhanced representativity is always sought after when producing models, one must

weigh the gains in representativity and accuracy with the loss in computational

efficiency. In the case of the modified SURYA code, it is unlikely that introduc-

ing θ-dependent toroidal turbulent diffusivity improved the program usability: as

based on the simpler branch of hydromagnetic dynamo models (the kinematic dy-

namo models) the purpose of the SURYA code is to provide an environment for

quick trials of flux transport dynamo models. However, one must remember that

the results of the modifications provided further evidence of the importance of
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θ-dependent turbulent diffusivity in kinematic solar dynamo models, which on is

a positive result on its own.

5.3 Further Questions

A question worthy of investigation pertains to the above mentioned dilemma of

increased time dependency: to what extent is the increased run time of modified

SURYA code a theoretical, rather than a practical problem? Furthermore, it is of

interest to investigate extended dimensional dependency of other variables, both

for the sake of improving the SURYA program and for the sake of investigating

the nature of these variables.
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A Mathematical Derivation

As a preliminary step to converting the modified ∂B
∂t

equation to a form suitable

for the SURYA program, the equation is solved on the form

∂B
∂t

= [Nr +Nθ]B +Q (12)

where Nr and Nθ correspond to r- and θ-dependent terms respectively, and Q to

r sin θ(Bp · ∇)Ω. First, the original modified equation

∂B
∂t

= −1

r
[
∂(rvrB)

∂r
+
∂(vθB)

∂θ
] + ηt

(
∇2 − 1

r sin θ

)
B+

r sin θ(Bp · ∇)Ω +
1

r

dηt
dr

∂(rB)

∂r
+

1

r2 sin θ

∂ηt
∂θ

∂(sin θB)

∂θ

(13)

is written in spherical coordinates

∂B
∂t

= −1

r

[
∂(rvrB)

∂r
+
∂(vθB)

∂θ

]
+ ηt[

1

r2
∂

∂r
{r2∂B

∂r
}+

1

r2 sin θ

∂

∂θ
{sin θ∂B

∂θ
}+

1

r2 sin2 θ
{∂

2B
∂φ2
} − B

r2 sin2 θ
]+

1

r

dηt
dr

∂(rB)

∂r
+

1

r2 sin θ

∂ηt
∂θ

∂(sin θB)

∂θ
+Q

(14)
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and then expanded and restructured

∂B
∂t

= −1

r
[
∂(rvrB)

∂r
] + ηt[

1

r2
{2r∂B

∂r
+ r2

∂2B
∂r2
}]− ηt[

B
2r2 sin2 θ

]+

1

r

dηt
dr

∂(rB)

∂r
− 1

r
[
∂(vθB)

∂θ
] + ηt[

1

r2 sin θ
{cos θ

∂B
∂θ

+ sin θ
∂2B
∂θ2
}]−

ηt[
B

2r2 sin2 θ
] + [

1

r2 sin θ

∂ηt
∂θ
{cos θB + sin θ

∂B
∂θ
}] +Q

(15)

as shown above. Further simplifications yield Nr and Nθ

NθB = −1

r

∂(VθB)

∂θ
+ ηt

cot θ

r2
∂B
∂θ

+ ηt
1

r2
∂2B
∂θ2
− ηt

B
2r2 sin2 θ

+ B
cot θ

r2
∂ηt
∂θ

+
1

r2
∂B
∂θ

∂ηt
∂θ

(16)

respectively. (Nr is ommited from the appendix as it is identical to the Nr term of

the original ∂B
∂t

equation, and hence inconsequential in program modifications.)
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B Difference Schemes

As the final step in converting the modified ∂B
∂t

equation to a form suitable for the

SURYA program, the terms of equation 16 derived in appendix A are converted

to corresponding difference equations.

The advection term −1
r
∂(VθB)
∂θ

is converted through the Lax-Wendroff differ-

ence scheme [2], and the r-dependent diffusion terms through the Crank Nicholsen

method [2]. The θ-dependant diffusion terms are also treated via the Crank Nicholsen

method due to their strucural equivalency to the r-dependent diffusion terms.The

resulting equation

NθB =
ηt
r2

[
Bm
j+1 +Bm

j−1 − 2Bm
j

4θ2
] +

ηt cot θ

r2
[
Bm
j+1 −Bm

j−1

24 θ
]− ηt

Bj

2r2 sin2 θ
−

− 1

4θ
vθ(i, j −

1

2
) sin(θ +

4θ
2

)[
Bm
j+1

2
+
Bm
j

2
− 4t

44 θ
+

(vθ(i, j + 1) sin(θ +4θ)Bm
j+1)− vθ(i, j) sin(θ)Bm

j ] +
1

r2
∂ηt
∂θ

[
Bm
j+1 −Bm

j−1

24 θ
]+

∂ηt
∂θ

cot θ

r2

(17)

is then solved and written on the form

− 2

4t
NθB = a(i, j)Bm

j−1,i + b(i, j)Bm
j,i + (̧i, j)Bm

j+1,i (18)
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were a(i, j)Bm
j−1,i, b(i, j)Bm

j,i and c(i, j)Bm
j+1,i are the SURYA code matrix coeffi-

cients for the Nθ term of the modified ∂B
∂t

equation. Upon comparison with the

original ∂B
∂t

equation’s Nθ term [2],

NθB =
ηt
r2

[
Bm
j+1 +Bm

j−1 − 2Bm
j

4θ2
] +

ηt cot θ

r2
[
Bm
j+1 −Bm

j−1

24 θ
]− ηt

Bj

2r2 sin2 θ
−

− 1

4θ
vθ(i, j −

1

2
) sin(θ +

4θ
2

)[
Bm
j+1

2
+
Bm
j

2
− 4t

44 θ
+

(vθ(i, j + 1) sin(θ +4θ)Bm
j+1)− vθ(i, j) sin(θ)Bm

j ]

(19)

we can deduce that the modifications to the SURYA code’s original matrix coeffi-

cients only consitute of adding new terms to the pre-existing ones. The new terms

are extrapolated to be as follows;

−∂ηt
∂θ

1

r224 θ
(20)

for the a(i, j)Bm
j−1,i matrix coefficient,

∂ηt
∂θ

cot θ

r2
(21)

for the b(i, j)Bm
j,i matrix coefficient, and

∂ηt
∂θ

1

r224 θ
(22)

for the c(i, j)Bm
j+1,i matrix coefficient. Thus, we have not only converted the modi-
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fied equations to their corresponding difference schemes, but also extrapolated the

exact terms needed for the SURYA code modification.
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C Modified SURYA Code

Due to the extensive nature of the original SURYA code, only directly modified

subsets (PART 0, II and V) of the code are included in this appendix. The com-

plete code, along with a guide, is available upon request from the original creator

Choudhuri [2].Guide lines specific to the modifications are available in the code

listed below in the form of comments beginning with (AB98), but these assume

that the reader has some prior experience with program modifications.

C PART 0

imp l i c i t r e a l ∗8(a−h , o−z )

parameter (nmax=257 , lmax=96)

common u(nmax , nmax) , t , i t

common/lmx/ l

common / p l s i n c o s / p l (nmax , lmax ) , sn (nmax)

double p r e c i s i o n a (nmax , nmax) , b(nmax , nmax) , c (nmax , nmax) ,

& d(nmax , nmax) , fun (nmax) , u int (nmax) ,

& e (nmax , nmax) , f (nmax , nmax) , vp (2∗nmax,2∗nmax) , vq (2∗nmax,2∗nmax)

& , a1 (nmax) , b1 (nmax) , c1 (nmax) , r (nmax) , phi (nmax , nmax) ,

& phib (nmax , nmax) , oldu (nmax , nmax) , s s1 (nmax) , uub (nmax) ,

& uu(nmax) , a l (nmax , nmax) ,dom(nmax , nmax) , ub(nmax , nmax) , ra (nmax)

double p r e c i s i o n ab (nmax , nmax) , bb(nmax , nmax) , cb (nmax , nmax) ,

& db(nmax , nmax) , eb (nmax , nmax) , fb (nmax , nmax) , eta (nmax , nmax) ,

& dror (nmax , nmax) , drot (nmax , nmax) , vp1 (2∗nmax,2∗nmax) ,

& vq1 (2∗nmax,2∗nmax) , p s i (2∗nmax,2∗nmax) , etab (nmax , nmax) ,
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& ss1_p (nmax) , etab2 (2∗nmax,2∗nmax) , dvp (2∗nmax,2∗nmax) ,

& vpb(2∗nmax,2∗nmax) , deta (2∗nmax,2∗nmax) , uin (nmax , nmax) ,

& detaq (2∗nmax,2∗nmax)

ex t e rna l ss , e r f

C (AB98 , 3)

C NOTE 1 : Added detaq (2∗nmax , 2∗nmax)

n=nmax−1

p i =4.0d0∗atan ( 1 . 0 d0 )

PART I I . This i s the part where the alpha c o e f f i c i e n t ,

C d i f f u s i v i t y , d i f f e r e n t i a l r o t a t i on and mer id iona l c i r c u l a t i o n

C are s p e c i f i e d . Leve l I I Users wish ing to make changes in

C th i s part should read Sect . 4 o f the ’Guide ’ .

pm=6.96d0

pb=0.55d0∗pm

pw=2.5∗pm

qm=pi

dp=(pm−pb)/ f l o a t (n)

dq=−qm/ f l o a t (n)

i t a=in t ( ( 0 . 7 d0−0.55d0 )∗pm/dp)+1

fa c =1.0d8 /(3600 .∗24∗365)

C Here begin the do loops to c a l c u l a t e p r o f i l e s o f alpha ,

C d i f f u s i v i t y and d i f f e r e n t i a l r o t a t i on at a l l the g r id
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C po in t s . The d i f f e r e n t i a l r o t a t i on i s wr i t t en in the f i l e

C ’ d i f f r o t . dat ’ .

open (25 , f i l e =’omega . dat ’ , s t a tu s=’unknown ’ , a c c e s s=’append ’ )

do i = 1 , nmax

ra ( i )=pb+f l o a t ( i −1)/ f l o a t (n )∗ (pm−pb)

p=pb+f l o a t ( i −1)/ f l o a t (n )∗ (pm−pb)

do j = 1 , nmax

q=qm−f l o a t ( j −1)/ f l o a t (n)∗qm

co = dcos (q )

C ALPHA PROFILE

a l ( i , j ) = 0 .25 d0∗co ∗ (1 . 00 d0+

& e r f ( ( p−0.95d0∗pm)/ (0 . 030 d0∗pm) ) ) ∗ ( 1 . 0 0 d0−e r f ( ( p

& −pm)/ (0 . 030 d0∗pm) ) )

C DIFFUSIVITY PROFILES

eta ( i , j ) = 0.000220 d0 + ( et0 /2 .00 d0 )∗ ( 1 . 0 d0 +

& e r f ( ( p−0.7d0∗pm)/ (0 . 030 d0∗pm) ) )

! etab ( i , j ) = 0.00022 d0 + ( et1 /2 .00 d0 )∗ ( 1 . 0 d0 +

! & e r f ( ( p−0.725d0∗pm)/ (0 . 030 d0∗pm)))+ ( et0 /2 .0 d0 )

! & ∗ ( 1 . 0 d0+e r f ( ( p−0.975d0∗pm)/ (0 . 030 d0∗pm) ) )

C SOLAR DIFFERENTIAL ROTATION PROFILE
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dom( i , j ) = 271 .9 d0 + 0.50 d0 ∗ (1 .000 d0 +

& e r f ( ( p−0.7d0∗pm)/ (0 . 030 d0∗pm) ) )∗ ( 2 8 9 . 5 d0 −

& 39.4 d0∗co∗co − 42 .2 d0∗co∗co∗co∗co −

& 271.9 d0 )

wr i t e (25 ,27) q , p ,dom( i , j )

27 format (3 ( f13 . 5 , 1 x ) )

end do

end do

c l o s e (25)

C The do loops are c l o s ed . We a l s o need the d i f f u s i v i t y at

C mid−po in t s in the g r id f o r some c a l c u l a t i o n s . This i s

C obta ined and s to r ed now .

! do i =1 ,2∗n+1

! p=pb+f l o a t ( i −1)∗(pm−pb)/ f l o a t (2∗n)

! do j =1 ,2∗n+1

! etab2 ( i , j ) = 0.00022 d0 + ( et1 /2 .00 d0 )∗ ( 1 . 0 d0 +

! & e r f ( ( p−0.725d0∗pm)/ (0 . 030 d0∗pm)))+ ( et0 /2 .0 d0 )

! & ∗ ( 1 . 0 d0+e r f ( ( p−0.975d0∗pm)/ (0 . 030 d0∗pm) ) )

! end do

! end do
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C Der i va t i v e s o f d i f f e r e n t i a l r o t a t i on are obta ined and s to r ed

C now f o r fu tu r e use .

do i =2,n

do j =2,n

dror ( i , j )=(dom( i +1, j )−dom( i −1, j ) ) / ( 2 . 0 d0∗dp)

drot ( i , j )=(dom( i , j+1)−dom( i , j −1))/(2 .0 d0∗dq )

end do

end do

C MERIDIONAL CIRCULATION. Note that t h i s i s c a l c u l a t ed both at the

C gr id−po in t s and mid−po in t s . F i r s t the stream func t i on p s i ( i , j ) i s

C ca l c u l a t ed . I t i s wr i t t en in the f i l e ’ p s i . dat ’ .

C

beta1=1.5d0

beta2=1.3d0

pp=0.635d0∗pm

de l =2.0000001d0
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gm=3.1d0

c gm=3.47d0

p0=(pm−pb )/3 . 50 d0

open (82 , f i l e =’ p s i . dat ’ , s t a tu s=’unknown ’ , a c c e s s=’append ’ )

do i =1 ,2∗n+1

p=pb+f l o a t ( i −1)/ f l o a t (2∗n )∗ (pm−pb)

do j =1 ,2∗n+1

q=qm−f l o a t ( j −1)/ f l o a t (2∗n)∗qm

C

i f ( q . l e . p i /2 .0 d0 ) then

exq0=dexp(−beta1∗q∗∗ de l )

exqm=dexp ( beta2 ∗(q−pi /2 .0 d0 ) )

gau=dexp (−1.05∗((p−p0 )/gm)∗∗2)

p s i ( i , j )=(p−pp)∗ ds in ( p i ∗(p−pp )/(pm−pp ))∗

& (1 . 00 d0−exq0 )∗ ( 1 . 0 0 d0−exqm)∗ gau

end i f

C

i f ( q . gt . p i /2 .0 d0 ) then

exq0=dexp(−beta1 ∗( pi−q)∗∗ de l )
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exqm=dexp ( beta2 ∗( p i /2 .0 d0−q ) )

gau=dexp (−1.05∗((p−p0 )/gm)∗∗2)

p s i ( i , j )=−(p−pp)∗ ds in ( p i ∗(p−pp )/(pm−pp ))∗

& (1 . 00 d0−exq0 )∗ ( 1 . 0 0 d0−exqm)∗ gau

end i f

C

i f (p . l e . pp ) then

p s i ( i , j )=0.0d0

end i f

wr i t e (82 ,34) q , p , p s i ( i , j )

34 format (3 ( f13 . 5 , 1 x ) )

end do

end do

c l o s e (82)

C Now components o f v e l o c i t y are c a l c u l a t ed at gr id−po in t s and

C mid−po in t s from the stream func t i on p s i ( i , j ) .

C

open (87 , f i l e =’v_theta . dat ’ , s t a tu s=’unknown ’ )
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do i =2 ,2∗n

p=pb+f l o a t ( i −1)∗(pm−pb)/ f l o a t (2∗n)

do j =2 ,2∗n

q=qm−f l o a t ( j−1)∗qm/ f l o a t (2∗n)

vp1 ( i , j )=2.4573d0∗v0 ∗( p s i ( i , j+1)−p s i ( i , j −1))/(p∗∗2∗ ds in (q )∗dq

& ∗(pm/p−0.95d0 )∗∗1 . 5 )

vq1 ( i , j )=−2.4573d0∗v0 ∗( p s i ( i +1, j )−p s i ( i −1, j ) ) / ( p∗ ds in (q )∗dp

& ∗(pm/p−0.95d0 )∗∗1 . 5 )

wr i t e (87 ,34) q , p , vq1 ( i , j )

vp ( i , j )=vp1 ( i , j )∗ dt / ( 2 . d0∗p∗dp)

vq ( i , j )=vq1 ( i , j )∗ dt / ( 2 . d0∗p∗ ds in (q )∗dq )

end do

end do

c l o s e (87)

C

C PART V. Now we come to the c en t r a l part o f the

C programme where the time advancement

C takes p lace . ’ k ’ i s the counter to keep tab on

C the time . In each step o f the do loop ’ do k=1,kend ’ ,
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C the magnetic f i e l d s are advanced through one time step ’ dt ’ .

kend = tmax/dt

t=0.0d0

do k=1,kend

C (AB98 , 1 )

C NOTE 1 : Added extra terms from modi f i ed dB/dt to ab ( i , j ) ,

C bb( i , j ) , cb ( i , j ) ;

C NOTE 3 : Moved matrix c o e f f i c i e n t b lock from PART IV to V to

C accomodate time dependency o f added terms

do i =2,n

p=pb+f l o a t ( i −1)/ f l o a t (n )∗ (pm−pb)

do j =2,n

q=qm−f l o a t ( j −1)/ f l o a t (n)∗qm

C (AB98 , 4)

C NOTE 1 : Changed exp r e s s i on f o r etab ( i , j ) and etab2 ( i , j )

C ( both are exp r e s s i on s f o r eta t o r o i d a l ) and moved them
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C into time loop to accomate f o r the time dependency o f

C new eta exp r e s s i on

etab ( i , j ) = (0 .00022 d0 + ( et1 /2 .00 d0 )∗ ( 1 . 0 d0 +

& e r f ( ( p−0.725d0∗pm)/ (0 . 030 d0∗pm)))+ ( et0 /2 .0 d0 )

& ∗ ( 1 . 0 d0+e r f ( ( p−0.975d0∗pm)/ (0 . 030 d0∗pm) ) ) ) /

& (1 . 0 d0+(ub( i , j ) )∗∗2)

end do

end do

do i =1 ,2∗n+1

p=pb+f l o a t ( i −1)∗(pm−pb)/ f l o a t (2∗n)

do j =1 ,2∗n+1

etab2 ( i , j ) = (0 .00022 d0 + ( et1 /2 .00 d0 )∗ ( 1 . 0 d0 +

& e r f ( ( p−0.725d0∗pm)/ (0 . 030 d0∗pm)))+ ( et0 /2 .0 d0 )

& ∗ ( 1 . 0 d0+e r f ( ( p−0.975d0∗pm)/ (0 . 030 d0∗pm) ) ) ) /

& (1 . 0 d0+(ub( i , j ) )∗∗2)

end do

end do
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do i =2 ,2∗n

p=pb+f l o a t ( i −1)∗(pm−pb)/ f l o a t (2∗n)

do j =2 ,2∗n

q=qm−f l o a t ( j−1)∗qm/ f l o a t (2∗n)

C (AB98 , 2)

C NOTE 2 : As the ext ra terms o f the modi f i ed matrix c o e f f i c i e n t

C inc lude a p r ev i ou s l y undef ined func t i on d( eta )/d( theta

C a new func t i on detaq was de f ined f o r the purpose .

C The d e f i n i t i o n was put with in the time V loop to

C accomodate time dependency .

deta ( i , j )=( etab2 ( i +1, j )−etab2 ( i −1, j ) ) / ( dp)

detaq ( i , j )=( etab2 ( i , j+1)−etab2 ( i , j −1))/(dq )

vpb ( i , j )=(vp1 ( i , j )−deta ( i , j ) )∗ dt / ( 2 . d0∗p∗dp)

end do

end do

do i =2,n

p=pb+f l o a t ( i −1)/ f l o a t (n )∗ (pm−pb)
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do j =2,n

q=qm−f l o a t ( j −1)/ f l o a t (n)∗qm

C (AB98 , 1 )

C NOTE 1 : Added extra terms from modi f i ed dB/dt to ab ( i , j ) ,

C bb( i , j ) , cb ( i , j ) ;

C NOTE 3 : Moved matrix c o e f f i c i e n t b lock from PART IV to V to

C accomodate time dependence o f added terms

ab ( i , j )=−(etab ( i , j )∗ dt / (2 . 0 d0∗(p∗dq)∗∗2)− etab ( i , j )∗ dt/

& (4 . 0 d0∗dtan (q )∗p∗p∗dq)+

& vq (2∗ i −1 ,2∗ j−2)∗ds in (q−dq/

& 2 .0 d0 )∗ ( 1 . 0 d0+vq (2∗ i −1 ,2∗ j−3)∗ds in (q−dq ) ) / 2 . 0 d0

&−detaq (2∗ i −1 ,2∗ j −1)∗( dt /2 .0 d0 ) / ( 2 . 0 d0∗dq∗p∗∗2))

bb( i , j )=−(−etab ( i , j )∗ dt /( ( p∗dq)∗∗2)−

& etab ( i , j )∗ dt / (4 . 0 d0∗(p∗ ds in (q))∗∗2)−( vq (

& 2∗ i −1 ,2∗ j )∗ ds in (q+dq /2 .0 d0 )∗ ( 1 . 0 d0+vq (2∗ i −1 ,2∗ j−1)∗ds in (q ) )

&−vq (2∗ i −1 ,2∗ j−2)∗ds in (

& q−dq /2 .0 d0 )∗ ( 1 . 0 d0−vq (2∗ i −1 ,2∗ j−1)∗ds in (q ) ) ) / 2 . 0 d0+

& ((1/ dtan (q ) )∗ detaq (2∗ i −1 ,2∗ j −1)∗( dt /2 .0 d0 ) ) / ( p∗∗2))

cb ( i , j )=−(etab ( i , j )∗ dt / (2 . 0 d0∗(p∗dq)∗∗2)+

& etab ( i , j )∗ dt / (4 . 0 d0∗dtan (q )∗p∗p∗

& dq)−vq (2∗ i −1 ,2∗ j )∗ ds in (q+dq /2 .0 d0 )∗ ( 1 . 0 d0−vq (2∗ i −1 ,2∗ j +1)∗ ds in (q+
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& dq ) ) / 2 . 0 d0+(detaq (2∗ i −1 ,2∗ j −1)∗( dt /2 .0 d0 ) ) / ( 2 . 0 d0∗dq∗p∗∗2))

db( i , j )=−(etab ( i , j )∗ dt / (2 . 0 d0∗dp∗∗2)− etab ( i , j )∗ dt / ( 2 . d0∗p∗dp)+

& vpb(2∗ i −1 ,2∗ j −1)∗(p−dp/2 .0 d0 )∗ (

& 1 .0 d0 +vpb(2∗ i −2 ,2∗ j −1)∗(p−dp ) ) / ( 2 . 0 d0 ) )

eb ( i , j )=−(−etab ( i , j )∗ dt /(dp∗∗2)−

& 0.0 d0∗ etab ( i , j )∗ dt /(p∗dp)−etab ( i , j )∗ dt / (4 . 0 d0∗

& (p∗ ds in (q))∗∗2)−dvp(2∗ i −1 ,2∗ j−1)∗dt /2 .0 d0−vpb(2∗ i −1 ,2∗ j −1)∗(dp+

& vpb(2∗ i , 2∗ j−1)∗p∗(p+dp/2 .0 d0)+(p−dp/2 .0 d0 )∗p∗

& vpb(2∗ i −2 ,2∗ j −1))/2.0 d0 )

fb ( i , j )=−(etab ( i , j )∗ dt / (2 . 0 d0∗dp∗∗2)+

& etab ( i , j )∗ dt / ( 2 . d0∗p∗dp)−vpb(2∗ i −1 ,2∗ j−1)∗

& (p+dp/2 .0 d0 )∗ ( 1 . 0 d0 −vpb(2∗ i , 2∗ j −1)∗(p+dp ) ) / 2 . 0 d0 )

end do

end do

C PART V−A. CALCULATING TIME ADVANCED MAGNETIC FIELDS AT INTERIOR GRID

C POINTS. Sect . 5 o f the ’Guide ’ exp l a i n s how magnetic f i e l d s are

C advanced by s o l v i n g t r i d i a g o n a l matr i ce s with the subrout ine ’ t r idag ’

do i =2,n

do j =2,n

phi ( i , j )=−d( i , j )∗u( i −1, j )+(−e ( i , j )+1.0d0 )∗u( i , j )
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& −f ( i , j )∗u( i +1, j )+a l0 ∗ a l ( i , j )∗ub( i , j )∗ dt /2 .0 d0

end do

end do

do i =2,n

p=pb+f l o a t ( i −1)/ f l o a t (n )∗ (pm−pb)

do j =2,n

q=qm−f l o a t ( j −1)/ f l o a t (n)∗qm

br = (u( i , j +1)∗ ds in (q+dq)−u( i , j−1)∗ds in (q−dq ))∗ dt / (4 . 0 d0∗dq )

bt=(u( i −1, j )∗ ( p−dp)−u( i +1, j )∗ ( p+dp ))∗ ds in (q )∗ dt / (4 . 0 d0∗p∗dp)

phib ( i , j )=−db( i , j )∗ub( i −1, j )+(−eb ( i , j )+1.0d0 )∗ub( i , j )

& −fb ( i , j )∗ub( i +1, j )+br∗dror ( i , j )+bt∗drot ( i , j )

end do

end do

do i =2,n

do j =2,n

a1 ( j−1)=a ( i , j )

b1 ( j−1)=b( i , j )+1.0d0
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c1 ( j−1)=c ( i , j )

r ( j−1)=phi ( i , j )

end do

r (1)=phi ( i ,2)−a1 (1)∗u( i , 1 )

r (n−1)=phi ( i , n)−c1 (n−1)∗u( i , n+1)

c a l l t r i d ag ( a1 , b1 , c1 , r , uu , n−1)

do j =2,n

u( i , j ) = uu( j−1)

phi ( i , j )=−phi ( i , j )+2.0d0∗uu( j−1)

end do

end do

! do i =2,n

! do j =2,n

! p=pb+f l o a t ( i −1)/ f l o a t (n )∗ (pm−pb)

! q=qm−f l o a t ( j −1)/ f l o a t (n)∗qm

! br = (u( i , j +1)∗ ds in (q+dq)−u( i , j−1)∗

! d s in (q−dq ))∗ dt / (4 . 0 d0∗dq )
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! bt=(u( i −1, j )∗ ( p−dp)−u( i +1, j )∗ ( p+dp ))∗

! d s in (q )∗ dt / (4 . 0 d0∗p∗dp)

! phib ( i , j )=−db( i , j )∗ub( i −1, j )+(−eb ( i , j )+1.0d0 )∗ub( i , j )

! & −fb ( i , j )∗ub( i +1, j )+br∗dror ( i , j )+bt∗drot ( i , j )

! end do

! end do

do i =2,n

do j =2,n

a1 ( j−1)=ab ( i , j )

b1 ( j−1)=bb( i , j )+1.0d0

c1 ( j−1)=cb ( i , j )

r ( j−1)=phib ( i , j )

end do

r (1)=phib ( i ,2)−a1 (1)∗ub( i , 1 )

r (n−1)=phib ( i , n)−c1 (n−1)∗ub( i , n+1)

c a l l t r i d ag ( a1 , b1 , c1 , r , uub , n−1)

do j =2,n
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ub( i , j ) = uub( j−1)

phib ( i , j )=−phib ( i , j )+2.0d0∗uub( j−1)

phi ( i , j )=phi ( i , j )+a l0 ∗ a l ( i , j )∗ub( i , j )∗ dt /2 .0 d0

end do

end do

do i =2,n

p=pb+f l o a t ( i −1)/ f l o a t (n )∗ (pm−pb)

do j =2,n

q=qm−f l o a t ( j −1)/ f l o a t (n)∗qm

br = (u( i , j +1)∗ ds in (q+dq)−u( i , j−1)∗ds in (q−dq ))∗ dt / (4 . 0 d0∗dq )

bt=(u( i −1, j )∗ ( p−dp)−u( i +1, j )∗ ( p+dp ))∗ ds in (q )∗ dt / (4 . 0 d0∗p∗dp)

phib ( i , j )=phib ( i , j )

& +br∗dror ( i , j )+bt∗drot ( i , j )

end do

end do

do j =2,n

do i =2,n
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a1 ( i−1)=d( i , j )

b1 ( i−1)=e ( i , j )+1.0d0

c1 ( i−1)=f ( i , j )

r ( i−1)=phi ( i , j )

end do

r (1)=phi (2 , j )−a1 (1)∗u (1 , j )

r (n−1)=phi (n , j )−c1 (n−1)∗u(n+1, j )

c a l l t r i d ag ( a1 , b1 , c1 , r , uu , n−1)

do i =2,n

u( i , j )=uu( i −1)

end do

end do

C

do j =2,n

do i =2,n

a1 ( i−1)=db( i , j )

b1 ( i−1)=eb ( i , j )+1.0d0

c1 ( i−1)=fb ( i , j )
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r ( i−1)=phib ( i , j )

end do

r (1)=phib (2 , j )−a1 (1)∗ub (1 , j )

r (n−1)=phib (n , j )−c1 (n−1)∗ub(n+1, j )

c a l l t r i d ag ( a1 , b1 , c1 , r , uub , n−1)

do i =2,n

ub( i , j )=uub( i −1)

end do

end do
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