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Abstract

Mathematical models for describing ocean waves play an important role in coastal engi-

neering. Different wave models make different assumptions for approximation of surface

elevation and velocity. To investigate the validity of Stokes’ wave theory, linear random

wave theory, Wheeler stretching, and 2nd order random wave theory, calculations for sur-

face elevation and horizontal velocities were made using the four models. The calculated

surface elevations were compared to measurement data and the horizontal velocity pro-

files were compared between models. This study provides support for previous findings

of linear random wave theory overpredicting horizontal velocities and Wheeler stretching

underpredicting horizontal velocities. This study also found that linear random wave the-

ory predicts the surface elevation more accurately than 2nd order random wave theory,

which contradicts results from previous studies. The relatively poor accuracy of 2nd order

random wave theory may be explained by uncertainties in the calculation of cut-off fre-

quency. The unexpectedly high accuracy of linear random wave theory may be explained

by the limitations of measurement data but this needs to be investigated further by com-

paring different spectral analysis techniques. This paper provides framework for further

studies of wave models in different wave conditions with the aim of applying them in

coastal engineering.
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Glossary

Figure 1 is illustration of a water wave. Symbols are defined in Table 1 and Table 2.

SWL
Still Water Level, z = 0

λ

h

H
aη

Trough

Crest

z = −h

z,w

x,uc

Figure 1: An illustration of a water wave.

Table 1: Definitions of symbols.

Symbol Definition Unit

H wave height m

η water surface elevation from SWL m

h water depth m

λ wavelength m

T wave period s

u horizontal particle velocity m/s

w vertical particle velocity m/s

Table 2: Definitions of calculated symbols.

Name Definition

wave number k = 2π
λ

angular frequency ω = 2π
T

wave amplitude a = H
2

wave steepness s = H
λ

phase velocity c = λ
T
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Dai, T 1 INTRODUCTION

1 Introduction

Coastal engineering requires mathematical models that describe ocean waves. One issue

to account for in construction of coastal structures is fatigue failure [1]. This mechanism

refers to formation and growth of cracks on a material as a result of cyclic loads from

ocean waves [1]. By modelling waves nearby a construction for an extended period of time,

the long-term distribution of wave-induced loads can be analyzed, thus allowing fatigue

assessment [2].

The main challenge in wave modelling is the nonlinear and irregular behavior of ocean

waves. Ocean waves vary in height, direction and form as they propagate. Wave theories

provide approximations for waves and model them as two-dimensional waves [3]. In this

study, the validity and limitations of four different wave theories are investigated. First, a

literature review is conducted to understand fundamental ocean wave concepts. Second,

mathematical models are used to calculate surface elevation and horizontal velocities

based on measurement data [4].

1.1 Regular Water Waves

Regular waves are periodic, they have a constant form that is repeated for each period

in time and space. Regular waves can be described using linear regular wave theory, also

known as Airy wave theory [3].

1.1.1 Assumptions for Linear Wave Theory

(A) Mass continuity applies, meaning that

∂u

∂x
+
∂w

∂z
= 0 (1)

where u is the velocity component in the direction of wave propagation and w is the

velocity component in the direction perpendicular to the wave propagation [3].

(B) The motion is irrotational, which means that viscous forces and external forces are
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negligible, therefore
∂w

∂x
− ∂u

∂z
= 0 [3]. (2)

Since the flow is irrotational, energy is conserved.

(C) The unsteady Bernoulli equation applies,

ρ
∂ϕ

∂t
+ p+ ρgz + ρ

[
∂xϕ

2 + ∂yϕ
2

2

]
= C (3)

where ϕ is velocity potential, p is total pressure, g is gravitational acceleration g =

9.81m/s2, ρ is fluid density and C is a constant. Equation (3) states the relationship

between fluid velocity, pressure and the potential energy, which ensures the conservation

of energy followed from Equation (2). [3]

(D) The wave motion is periodic in horizontal position x and time t, meaning that the

wave height η varies in a regular pattern [3].

(E) The wave amplitude a is small compared to the wavelength λ, (a≪ λ), since increased

wave steepness s reduces the validity of Airy wave theory [3].

(F) The wave amplitude is small compared to water depth h, (a≪ h), which means that

influence from the water bed on the wave is negligible [3].

1.1.2 Boundary Conditions for Linear Waves

Fluid particles near the surface are assumed to remain on the surface, as governed by the

following kinematic free surface boundary condition.

w =
∂η

∂t
+
∂η

∂x
u (4)

which can be linearised to Equation (5)

w ≈ ∂η

∂t
(5)
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by evaluating at z = 0 instead of z = η. Based on the assumptions and boundary condi-

tions for linear wave theory, the surface elevation η is given by the following equation.

η = a sin(ωt− kx) (6)

where ω is the wave frequency and k is the wave number. [3]

The dynamic free surface boundary condition equates the pressure along the surface

to the atmospheric pressure using Bernoulli equation,

gη +
1

2

((
∂ϕ

∂x

)2

+

(
∂ϕ

∂z

)2
)

+
∂ϕ

∂t
= 0 (7)

for z = η [3]. The small amplitude assumption of linear regular wave theory allows the

pressure for a linear wave to be evaluated at SWL where z = 0 and the nonlinear terms

can be neglected to yield the linearised dynamic free surface boundary condition,

gη +
∂ϕ

∂t
= 0 [5]. (8)

1.1.3 Phase Velocity for Linear Waves

Phase velocity is the speed of individual waves. The dispersion relationship, Equation (9),

is used to find phase velocity.

ω2 = gk tanh(kh) (9)

Water waves are dispersive because waves of different wavelengths propagate with different

phase velocities. Following Equation (9), the phase velocity c is given by,

c =
λ

T
=
ω

k
=
(g
k
tanh(kh)

) 1
2 (10)

where T is the wave period. In deep water, i.e. h > 0.5λ, the approximation tanh(kh) = 1

is made and dispersion relationship and phase velocity for deep water are,

ω2 = gk and co =

√
g

k
. (11)
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In shallow water, i.e. h < 0.05λ, the approximation tanh(kh) = kh is made and dispersion

relationship and phase velocity for shallow water are,

ω2 = ghk2 and c =
√
gh. [6] (12)

1.1.4 Stokes’ Wave Theory

Stokes’ wave theory is a nonlinear wave theory that is applied for waves with large wave

steepness s [3]. Figure 2 shows a Stokes’ wave. The wave is regarded as a sum or super-

position of component waves called harmonics [7].

Figure 2: An illustration of a Stokes’ 2nd order wave profile. The first harmonic (blue
dashed line) and second harmonic (yellow dashed line) are plotted against the resulting
2nd order wave (red line).

The first harmonic is a linear component regarded as a free wave which satisfies the

assumptions of linear wave theory. The higher order harmonics are bound waves. Bound

waves are generated by interactions between waves and do not satisfy the dispersion
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relationship from Equation (9). In Figure 2, it can be observed that the 2nd order wave

has taller crests and broader, flatter troughs compared to the first harmonic. Surface

elevation for Stokes’ 2nd order solution can be calculated using Equation (13).

η =
H

2
cos(kx− ωt) +

H2k

16

cosh(kh)

sinh3(kh)
(2 + cosh(2kh)) cos[2(kx− ωt)] (13)

where the first term is the first harmonic and the second term is the second harmonic.

The horizontal velocity is given by the following equation.

u =
H

2

gk

ω

cosh[k(h+ z)]

cosh(kh)
cos(kx− ωt) +

3

16
H2ωk

cosh[2k(h+ z)]

sinh4(kh)
cos[2(kx− ωt)]. [3]

(14)

For Stokes’ expansions of higher order, additional nonlinear terms are added for more

accurate approximation. The appropriate order of Stokes’ expansion is dependent on water

depth and wave steepness. Stokes’ wave theory is applicable for deep water conditions.

The steeper the wave, the higher order of Stokes’ expansion is required for accurate

approximation. H
gT 2 is a relative measure for wave steepness. With calculated H

gT 2 and

water depth h, the applicable Stokes’ order is determined using a diagram developed by

Le Méhauté. [8]

1.2 Random Waves

Ocean waves are in reality unsteady and not periodic, they are constructed of a number

of waves interacting with each other [3].

1.2.1 Linear Random Wave Theory

A random wave system can be described by Linear Random Wave Theory, LRWT, as a

superposition of a large number of regular linear waves of different amplitudes at random

phase angles αm travelling in the same direction. The surface elevation of linear random

waves is given by Equation (15).

η =
M∑

m=1

am cos(kmx− ωmt+ αm) (15)
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where am, km, ωm and αm are the amplitude, wave number, angular frequency and phase

angle corresponding to the mth wave and M is the total number of waves. The velocity is

given by Equation (16).

u =
M∑

m=1

amωm
cosh km(z + h)

sinh(kmh)
cos(kmx− ωmt+ αm). [9] (16)

Dispersion relationship from Equation (9) is applied to all of the waves in the system as

LRWT assumes all waves being free waves. However, waves of different frequencies interact

with each other and generate bound waves. The generated bound waves do not satisfy

dispersion relationship. Steep waves contain bound waves that have smaller wave numbers

k than their corresponding free waves. In LRWT, the larger wave numbers contribute to

overestimated horizontal velocities. The impact from interactions between waves increase

when approaching wave surface where z = η. Since LRWT evaluates boundary conditions

at z = 0, overpredictions of horizontal velocities are made, this is referred to as high-

frequency contamination. [10]

1.2.2 Wheeler Stretching

Wheeler Stretching is an empirically corrected wave theory based on LRWT. Wheeler

stretching introduces an effective z-coordinate z∗ as a function of water depth h and

surface elevation η that can be calculated using Equation (17).

z∗ =
h(z − η)

(h+ η)
(17)

Equation (17) sets z∗ = 0 to the original surface elevation z = η. Applying Wheeler

stretching, the horizontal velocity is given by,

u =
M∑

m=1

amωm
cosh km(z

∗ + h)

sinh(kmh)
cos(kmx− ωmt+ αm). [11] (18)

Wheeler stretching introduces a new z-coordinate system and calculates the horizontal

velocity using LRWT. z∗ is lower than z, therefore Wheeler stretching yields smaller
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velocities than LRWT [12]. However, Wheeler stretching does not satisfy mass continuity

[13].

1.2.3 2nd Order Random Wave Theory

The 2nd order random wave includes bound waves generated by interactions between

two waves. The surface elevation approximated using Stokes’ 2nd order wave theory have

higher and narrower crests as well as broader and less deep troughs compared to the surface

elevation approximated using LRWT [14]. These nonlinear effects are comparable to the

observations seen in Figure 2 for Stokes’ 2nd order expansion. A model of interactions

between two random waves developed by Longuet-Higgins & Stewart can be found in

Appendix A. Based on the two-wave interactions, a 2nd order random wave theory was

proposed by Sharma & Dean and the equations are found in Appendix B.

In order to apply higher order random wave theories, bound waves have to be dis-

tinguished from free waves. If 2nd order random wave theory is applied to bound waves

and free waves, unnecessary bound waves are generated from interactions between bound

waves [15]. Since bound waves have higher frequencies than the spectral peak frequency of

an amplitude spectrum [15], a low-pass filter is applied to eliminate bound waves. Based

on experimental data, DNVGL-RP-C205 guidelines have proposed following equation for

calculating cut-off angular frequency.

ωmax =

√
2g

Hs

(19)

where Hs is the significant wave given by Hs = 4σ where σ is the standard deviation of

the wave heights and Hs denotes the average height of the 1/3 highest waves [16].

1.3 Previous Studies

Standberg have conducted numerical simulations for prediction of horizontal velocities u

to evaluate the validity of 2nd order random wave model, LRWT, Wheeler’s method and

Grue’s method. Grue’s method is based on Stokes’ 3rd order wave theory and is applied
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to individual waves without considering interactions between waves. The data used were

measured elevation records from an experiment studying extreme events in a wave basin.

It was found that 2nd order random wave theory gives the overall best fit for horizontal

velocities. LRWT was found to notably overpredict velocities whereas Wheeler Stretching

underpredicts the velocities. [12]

Similar patterns are attained by Spell et al. in a study comparing LRWT and a hybrid

wave model using experimental data from a water basin [17]. The hybrid wave model is

a 2nd order random wave theory with improved methods of distinguishing bound waves

from free waves [18]. Results from these studies also show that the difference of LRWT

drastically increases when approaching SWL [12, 17].

Multiple previous studies have shown that 2nd order wave theory predicts higher crests

and flatter troughs in comparison to the surface elevation approximations made with

LRWT. These studies have also concluded that 2nd order wave theory yields more accurate

approximations for surface elevation than LRWT. [17, 19, 20]

1.4 Aim of the Study

Ocean waves are complex phenomena that can be described by mathematical modelling.

There are water wave models that describe linear, nonlinear, random and regular waves.

Linear wave theory is based on a number of assumptions that are seldom satisfied by

real ocean waves. Coastal engineering requires accurate approximations of the ocean wave

properties which have to account for interactions between waves. The aim of this study

is to investigate the validity of four established water wave theories, Stokes’ wave theory,

LRWT, LRWT with Wheeler stretching and 2nd order random wave theory for approxi-

mating the surface elevation and horizontal velocities of nonlinear random waves.

2 Method

In this study, four different mathematical models were used to calculate surface elevation

and horizontal velocities of nonlinear random waves. The used measurement data [4] had
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a significant wave height Hs of Hs = 16.7m. Through spectral analysis, the wave surface

elevation, see Appendix C, was decomposed into 50 component waves defined by wave

frequency f , wave height, wave amplitude and phase angle. Measured velocities are not

included in the measurement data and the technique for spectral analysis is not given.

Approximations for surface elevation η and horizontal velocity u were calculated using

Stokes’ wave theory, LRWT, LRWT with Wheeler stretching and 2nd order random wave

theory. By comparing the calculated data between models and with measurement data,

the validity of the studied wave theories was compared.

2.1 Assumptions and Cut-off Frequency for 2nd Order Random

Wave Theory

The calculations are simplified by assuming the wave travelling in deep water. By letting

water depth approach infinity, equations for 2nd order random wave theory from Appendix

B were simplified to the equations found in “Alternative methods of realizing the sea

spectrum for time-domain simulations of marine structures in irregular seas” [21]. The

cut-off angular frequency ωmax was calculated to ωmax = 0.87 rad/s using Equation (19)

which was converted to linear frequency fmax = 0.17Hz. The studied amplitude spectrum

can be found in Appendix D and only the frequencies lower than the cut-off frequency

were included in the calculations.
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2.2 Assumptions for Stokes’ Wave Theory and Stokes’ Order

Figure 3: Measured water surface elevation for the studied wave in the time frame
−2.80 s ≤ t ≤ 10.0 s [4].

Stokes’ wave theory was applied for the greatest wave height,Hmax. Using zero-down cross-

ing by finding the maximum difference between two consecutive maximum and minimum

values of surface elevation η, the greatest wave height was found to be Hmax = 25.9m.

The corresponding wave period was T = 12.4 s. In order to compare different wave the-

ories, the studied time frame shown in Figure 3 was set to −2.80 s ≤ t ≤ 10.0 s where

the highest wave was located. The order of Stokes’ wave theory was chosen to be the 5th

order since the wave propagates in deep water and the measure for steepness H
gT 2 = 0.017

corresponds to Stokes’ 5th order expansion. Equations for surface elevation and horizontal

velocity using Stokes’ 5th order expansion are found in Appendix E.

2.3 Assumptions for LRWT and Wheeler Stretching

For LRWT and Wheeler stretching, the wave was assumed to only vary with time. The

term kxm was thus not included in Equation (15), Equation (16), and Equation (18).
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3 Results

The results attained in this study are surface elevation and horizontal velocities calculated

using each of the studied wave theories. The calculated values and plots with measurement

data are presented in the following sections.

3.1 Horizontal Velocities

In Figure 4, the horizontal velocities, u, calculated with Stokes’ theory, LRWT, Wheeler

stretching and 2nd order wave theory are displayed with SWL at z = 0. Table 3 shows the

maximum velocities calculated at the highest surface elevation where z = 16.6m.

Figure 4: Velocity profiles for Stokes’ wave theory, LRWT, Wheeler stretching and 2nd

order random wave theory. SWL is the still water level where z = 0.
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Table 3: Horizontal velocity calculated with each of the studied models at the highest
surface elevation z = 16.6m.

Model Velocity [m/s]

Stokes’ wave theory 8.69

LRWT 5.48× 105

Wheeler’s stretching 10.4

2nd order random wave theory 12.7

3.2 Surface Elevation

In Figure 5, the surface elevation η calculated using Stokes’ theory, LRWT and 2nd order

wave theory are plotted against the measured surface elevation. Table 4 shows the R2

values for calculated surface elevation fitted to measured data points.

Figure 5: Approximated surface elevation using Stokes’ wave theory (yellow dashed line),
LRWT (red line) and 2nd order random wave theory (blue dotted line) plotted against
measured data points (purple dots).
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Table 4: Coefficient of determination, R2, for the surface elevations calculated with each
of the studied models fitted to measured surface elevation.

Model R2

Stokes’ wave theory 0.98

LRWT 1.00

2nd order random wave theory 0.97

4 Discussion

In this study, horizontal velocities are compared between the four wave models and LRWT

is found to overpredict the horizontal velocities. Approximations for surface elevation using

different models are compared to the measured surface elevation and the most accurate

approximation is found to be given by LRWT. The spectral analysis of the measurement

data and the cut-off frequency were two aspects that was found to be interesting.

4.1 Horizontal Velocities

In Figure 4, it can be observed that the horizontal velocities u calculated with LRWT

are notably larger than the horizontal velocities calculated using the other wave theories,

especially near SWL. Table 3 shows that LRWT gives an unrealistically large value of

548 000m/s for maximum horizontal velocity. These results indicate that LRWT over-

predicts horizontal velocities near SWL. The reason for overprediction is high-frequency

contamination as a result of LRWT neglecting influences from bound waves [10]. As the

wave approaches SWL, effects from bound waves increase and LRWT differs from the

other theories [10]. Similar results where found in previous studies [12, 17].

Figure 4 shows that Wheeler stretching approximates lower velocities than LRWT and

that 2nd order random wave theory gives values between Wheeler stretching and LRWT.

This is in accordance with results from previous studies [12, 17]. In this study, measured

velocities are not given, therefore an evaluation of the validity of different wave theories for

velocity calculation cannot be made. However, the results indicate that Wheeler stretching
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underpredicts the horizontal velocities and that LRWT overpredicts them.

4.2 Surface Elevation

In Figure 5, it can be seen that the surface elevation profile approximated with 2nd order

random wave theory has higher, narrower crests and broader, shallower troughs in com-

parison to the surface elevation calculated with LRWT. The difference in shape is caused

by bound waves generated by interactions between waves [15] and confirms results from

previous studies [17, 19, 20].

It can also be observed in Table 4 that the surface elevation calculated with LRWT

has a perfect correlation, R2 = 1.000, to the measured surface elevation in the studied

time frame. This observation differs from results attained in previous studies [17, 19, 20]

where 2nd order random wave theory was found to give the most accurate approximation.

LRWT regards all waves as free waves and reconstructs the original surface elevation

by a summation of the decomposed waves. The technique for spectral analysis is not

given in this study. However, the unexpected high accuracy of LRWT indicates that the

technique for spectral analysis could have influenced the approximation. Depending on

how the spectral analysis was conducted, the accuracy of LRWT for surface elevation

approximation varies.

In this study, the calculation of cut-off frequency could have affected the accuracy of

2nd order random wave theory. Since a general guideline was followed, bound waves could

have been included in the studied frequency range and contributed to deviations from the

original measured surface elevation [15]. In addition, 2nd order random wave theory does

not include the bound waves resulting from multi-wave interactions. A higher order wave

theory is required for higher accuracy when large numbers of waves are involved.

Stokes’ wave theory estimates the surface elevation for an individual wave that is as-

sumed to repeat periodically. Therefore, Stokes’ wave theory cannot represent an irregular

wave system but it is applicable for characterizing a specific wave.

In this study, measurement data is limited. Measured velocities and information about

the spectral analysis technique would enable deeper analysis of the validity of the tested
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models.

4.3 Further Studies

In order to further study the validity of 2nd order random wave theory, different meth-

ods for determining cut-off frequency should be compared. To investigate the influence

on LRWT from spectral analysis, different spectral analysis techniques should be im-

plemented and compared. Applying the wave models on wave data from different wave

conditions, such as different water depths, would allow applications in different coastal

areas.

4.4 Conclusion

By comparing the calculated surface elevations, calculated horizontal velocities and mea-

surement data, conclusions about the validity of different wave theories for approximating

surface elevation and horizontal velocities have been drawn. It is concluded that LRWT

gives the closest approximation for surface elevation of the studied wave despite previous

studies finding 2nd order random wave theory being more accurate. This can be explained

by the spectral analysis conducted with the measured data and the choice of cut-off fre-

quency for 2nd order random wave theory. Furthermore, this study provides some support

for Wheeler stretching underpredicting and LRWT overpredicting horizontal velocities.

However, further studies are required for drawing more extensive conclusions about the

validity of each wave model and the assumptions that have to be satisfied for implementing

each model in coastal engineering.
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A Interactions Between Two Waves

The following equations are the model for interactions between two waves developed by

Longuet-Higgins & Stewart. The surface elevation is given by the following equation.

η = η1 + η2 +
a1a2
2g

{Ccos(ψ1 − ψ2)−Dcos(ψ1 + ψ2)} (20)

where

ψ1 = (k1x− ω1t) ; ψ2 = (k2x− ω2t) [14]. (21)

The velocity potential is given by the following equation.

ϕ = ϕ1 + ϕ2 +
E cosh[(k1 − k2)(z + h)] sin(ψ1 − ψ2)

g(k1 − k2) sinh(k1h− k2h)− (ω1 − ω2)2 cosh(k1h− k2h)

+
F cosh[(k1 + k2)(z + h)] sin(ψ1 + ψ2)

g(k1 + k2) sinh(k1h+ k2h)− (ω1 + ω2)2 cosh(k1h+ k2h)

(22)

where

C =
[2ω1ω2(ω1 − ω2)(1 + α1α2) + ω3

1(α
2
1 − 1)− ω3

2(α
2
2 − 1)](ω1 − ω2)(α1α2 − 1)

ω2
1(α

2
1 − 1)− 2ω1ω2(α1α2 − 1) + ω2

2(α2 − 1)

+ ω2
1 + ω2

2 − ω1ω2(α1α2 + 1) (23)

D =
([2ω1ω2(ω1 + ω2)(1− α1α2)− ω3

1(α
2
1 − 1)− ω3

2(α
2
2 − 1)](ω1 + ω2)(1 + α1α2)

ω2
1(α

2
1 − 1)− 2ω1ω2(1 + α1α2) + ω2

2(α2 − 1)

+ ω2
1 + ω2

2 + ω1ω2(1− α1α2)

(24)

E = −1

2
a1a2[2ω1ω2(ω1 − ω2)(1 + α1α2) + ω3

1(α
2
1 − 1)− ω3

2(α
2
2 − 1)] (25)

F = −1

2
a1a2[2ω1ω2(ω1 + ω2)(1− α1α2)− ω3

1(α
2
1 − 1)− ω2

2(α
2
2 − 1)] (26)

with

α1 =
1

tanh(k1h)
and α2 =

1

tanh(k2h)
[14]. (27)
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ORDER RANDOM WAVE THEORY

B Equations for Surface Elevation and Velocity Poten-

tial Using 2nd Order Random Wave Theory

The surface elevation calculated using 2nd order random wave theory is given by Equation

(28).

η =
1

4

∞∑
i=1

∞∑
j=1

aiaj

{[
D−

ij − (ki · kj +RiRj)√
RiRj

+ (Ri +Rj)

]
cos(ψi − ψj)

+

[
D+

ij − (ki · kj −RiRj)√
RiRj

+ (Ri +Rj)

]
cos(ψi + ψj)

}
[21]. (28)

The velocity potential is given by the following equation.

ϕ =
1

4

∞∑
i=1

∞∑
j=1

bibj
cosh k−ij(h+ z)

cosh k−ijh

D−
ij

ωi − ωj

sin(ψi − ψj)

+
1

4

∞∑
i=1

∞∑
j=1

bibj
cosh k+ij(h+ z)

cosh k+ijh

D+
ij

ωi + ωj

sin(ψi + ψj) (29)

with

k−ij = |ki − kj| and k+ij = |ki + kj| (30)

and

D+
ij =

(
√
Ri +

√
Rj)
[√
Ri(k

2
j −R2

j ) +
√
Rj(k

2
i −R2

i )
]

(
√
Ri +

√
Rj)2 − k+ij tanh (k

+
ijh)

+
2(
√
Ri +

√
Rj)

2(ki · kj −RiRj)

(
√
Ri −

√
Rj)2 − k+ij tanh (k

+
ijh)

(31)

D−
ij =

(
√
Ri −

√
Rj)
[√
Ri(k

2
i −R2

i ) +
√
Ri(k

2
j −R2

j )
]

(
√
Ri +

√
Rj)2 − k−ij tanh (k

−
ijh)

+
2(
√
Ri −

√
Rj)

2(ki · kj +RiRj)

(
√
Ri −

√
Rj)2 − k−ij tanh (k

−
ijh)

(32)

with

Ri = ki tanh(kih) [21]. (33)
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C Measured Surface Elevation

Figure 6 shows the surface elevation for the measurement data [4].

Figure 6: The measured water surface elevation [4].

D Measured Amplitude Spectrum

Figure 7 shows the frequency spectrum for measured amplitude [4].

Figure 7: The frequency spectrum for measured amplitude [4].
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E Equations for Stokes’ 5th Order Theory

The following equations is Stokes’ 5th order solution for surface elevation and velocity

potential.

kη(x) = kh+ϵ cos(kx)+ϵ2B22 cos(2kx)+ϵ
3B31[cos(kx)−cos(3kx)]+ϵ4[B42 cos(2kx)+B44 cos(4kx)]

+ ϵ5[−(B53 +B55) cos(kx) +B53 cos(3kx) +B55 cos(5kx)] (34)

ϕ(x, z) = −cx+ co

( g
k3

) 1
2

5∑
i=1

ϵi
i∑

j=1

Aij cosh(jkz) sin(jkx) (35)

where ϵ = Hk/2 and

B22 = coth(kh)

(
1 + 2S

2(1− S)

)
(36)

B31 =
−3(1 + 3S + 3S2 + 2S3)

8(1− S)3
(37)

B42 = coth(kh)
6− 26S − 182S2 − 204S3 − 25S5 + 26S5

6(3 + 2S)(1− S)4
(38)

B44 = coth(kh)
24 + 92S + 122S2 + 66S3 + 67S4 + 34S5

24(3 + 2S)(1− S)4
(39)

B53 = 9
132 + 17S − 2.216S2 − 5.897S3 − 6.292S4 − 2.687S5 + 194S6 + 467S7 + 82S8

128(3 + 2S)(4 + S)(1− S)6

(40)

B55 = 5
300 + 1.579S + 3.176S2 + 2.949S3 + 1.188S4 + 675S5 + 1.326S6 + 827S7 + 130S8

384(3 + 2S)(4 + S)(1− S)6

(41)

where S = sech(2kh) [22].
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