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Abstract

For a graph G = (V,E) and two nodes a, b ∈ V , a set S ⊆ V \{a, b} is a separator if

there exists no path between a and b that does not pass through any nodes in S. Such

a separator is minimal if it does not contain another separator for a and b as a proper

subset. This paper is concerned with finding the asymptotic growth of the maximum

number of minimal separators in any graph with respect to |V |. We refute the lower bound

Ω(1.4521|V |) claimed in [1], by presenting a flaw in the constructed family of graphs with

supposedly more than Ω(1.4521|V |) minimal separators. Instead, we conjecture that there

exists no graph with more than O(3
|V |
3 ) ⊂ O(1.4422n) minimal separators, and provide

some proofs supporting this conjecture.
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1 Preliminaries

1.1 Graph Theory

A graph consists of nodes and edges, and is denoted as G = (V,E), where V is the

set of nodes and E is the set of edges. The edge connecting nodes a and b is typically

written as (a, b). Throughout this paper, only undirected graphs are considered, meaning

(a, b) = (b, a). An induced subgraph G′ = (V ′, E ′) is a graph that consists of a subset

V ′ ⊂ V of the nodes, where (a, b) ∈ E ′ if and only if (a, b) ∈ E and a, b ∈ V ′. We

use GV \P to denote the induced subgraph of G = (V,E) where all nodes v ∈ P have

been removed from V . A path between two nodes v1, vm is an ordered collection of nodes

(v1, v2, ..., vm−1, vm) such that (vi, vi+1) ∈ E for all i ∈ {1, 2, ...,m − 1}. The notation

(v1, v2, ..., vm) ∈ E is defined to be equivalent with (v1, v2), (v2, v3), ..., (vm−1, vm) ∈ E.

Figure 1 shows an example of a graph.

a

b

c
d

f e

Figure 1: A graph G = (V,E) with V = {a, b, c, d, e, f} and E = {(a, b), (a, d), (b, c),
(b, d), (d, e), (e, f)} One possible path in G between f and a is (f, e, d, a).

1.1.1 Minimal Separators

For a graph G = (V,E) and nodes a, b ∈ V , a set S ⊆ V \{a, b} is an (a, b)-separator

if and only if there is no path between a and b in the induced subgraph GV \S. Such a

separator is minimal if there exists no node v ∈ S such that S\{v} is also an (a, b)-

separator. The number of minimal separators of a graph G = (V,E) is the number of
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distinct sets S ⊆ V that are minimal (a, b)-separators for some pair a, b ∈ V . Figure 2

illustrates the concept of minimal separators. Henceforth sep(G) is used to refer to the

number of distinct minimal separators in graph G, and G[n] denotes the set of all graphs

with |V | = n. In order to refer to the maximum number of minimal separators in any

graph with n nodes, we use ξn = max
G∈G[n]

[sep(G)].

a
b

a
b

Figure 2: Two (a, b)-separators (colored white) of the same graph. Only the rightmost
one is minimal. The black nodes and edges represent the induced subgraph GV \S.

1.1.2 Melon Graphs

Intuitively, a melon graph is a graph where two nodes a and b are connected by exactly

` disjoint paths of lengths k1, k2, ..., k`. Figure 3 shows an example of a melon graph.

Currently, the graph known to have the highest number of minimal separators with

respect to |V | is a melon graph. We use [X] to denote the set {1, 2, ..., X}, where X ∈ N.

Definition. Given ` ∈ N and numbers k1, k2, ..., k` ∈ N, a melon graph M = (V,E) is

defined as follows:

• The nodes a and b are in V .

• For every i ∈ [`], node vi,j ∈ V for all j ∈ [ki]

• Path (a, vi,1, vi,2, ..., vi,ki , b) ∈ E for every i ∈ [`].

• Nothing else is in E or V .

A layer in a melon graph is defined as the set of nodes {vi,1, vi,2, ..., vi,ki} for some i ∈ [`].

The graph Mx,` is defined to be the melon graph with ` layers and ki = x for all i.
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Figure 3: Melon graph with ` = 4, k1 = 3, k2 = 5, k3 = 4, k4 = 2.

1.2 Computational Complexity Theory

Computational complexity theory is the area of mathematics concerned with classifying

different computational problems, usually with respect to their asymptotic behaviour.

In order to study the asymptotic behaviour of a function f : N→ R, the notations O,

Ω and Θ are used. Intuitively, O is an upper bound of f(n). Formally, f(n) is O(g(n)) if

there exists some values n0, c > 0 such that f(n) ≤ c · g(n) for all n ≥ n0. Conversely,

Ω is a lower bound. The function f(n) is Ω(g(n)) if there exists some n0, c > 0 such

that f(n) ≥ c · g(n) for all n > n0. A function f(n) is Θ(g(n)) if it is both O(g(n)) and

Ω(g(n)).

2 Introduction

This paper concerns studying ξn, the maximum number of minimal separators across all

graphs with n = |V |. It does this through refuting a previously believed lower bound,

and conjecturing what the tight bound might be.

An example of a practical application of minimal separators is finding the most efficient

way of stopping something from reaching something else. This can include stopping an

infectious disease spreading from person A to person B (where the nodes are people, and

the edges represent whether two people interact), or stopping an army at point A from

reaching point B (in which case the graph would represent a map of the terrain).
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Bounding the maximum number of possible minimal separators in a graph is useful

for developing algorithms which find and compare such separators. One possible such

comparison is finding the lowest cost minimal separator, if different costs are assigned to

nodes. It is furthermore used in the study of exact algorithms whose aim is to optimally

solve hard problems exponentially faster than the brute force search [2, 3, 4, 5, 6].

A well-known lower bound on ξn is Ω(3
n
3 ) ⊂ Ω(1.4422n) [3]. This bound is attained in

the melon graph M3,` shown in Figure 4. Intuitively, to create a minimal (a, b)-separator,

one node is picked from each layer. There are three choices per layer, and n−2
3

layers,

resulting in at least 3
n−2
3 ∈ Ω(3

n
3 ) minimal separators.

a

b

Figure 4: Melon graph M3,` with Ω(3
n
3 ) minimal separators.

Note that only the (a, b)-separators of M3,` are counted in Ω(3
n
3 ). Including minimal

separators for all pairs of nodes will not increase the bound asymptotically, since for

any other pair of nodes, there exists only polynomially many separators which are not

(a, b)-separators.

The upper bound ξn ∈ O(nφn) was shown by Fomin and Villanger in [5], where

φ = 1+
√
5

2
, the golden ratio. Gaspers and Mackenzie claimed that ξn ∈ Ω(1.4521n) [1].

However, this paper presents an error in their proof of this lower bound.

3 Refuting the Previously Held Best Lower Bound

The intention of the proof in [1] is to construct a family of graphs that have Ω(1.4521n)

minimal separators. One of these graphs is shown in Figure 5. The fault in the proof lies
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in the assumption that all sets described as separators will actually remove every path

from a to b. In fact, a majority of the sets that are claimed to be separators are not. The

following is the proof directly quoted from [1]:

a

b

Figure 5: G1, as constructed in the proof. Nodes vi,j are omitted for j ∈ {4, 5, ..., 23}.
This is the graph claimed to have Ω(1.4521n) separators.

Theorem. ξn ∈ Ω(1.4521n) [1]

Proof. We prove the theorem by exhibiting a family of graphs {G1, G2, ...} and lower

bounding their number of minimal separators. Let I = {1, ..., 6} and J = {1, ..., 24}. The

graph G1 is constructed as follows (see 5). It has vertex set V = {a, b} ∪ {vi,j : i ∈ I, j ∈

J}. We denote by Vi the vertex set {vi,j : j ∈ J}. The edge set E of G1 is obtained

by first adding the paths (a, v1,j , v2,j , v3,j) and (v4,j , v5,j , v6,j , b) for all j ∈ J , and then

adding the edges {(v3,j , v4,k) : j, k ∈ J and j 6= k}. The graph G`, ` ≥ 2, is obtained

from ` disjoint copies of G1, merging the copies of a, and merging the copies of b.

Let us now lower bound the minimal (a, b)-separators Sj in G1 that do not con-

tain any vertex from {v1,j , v2,j , v3,j , v4,j , v5,j , v6,j} for some j ∈ J . Each such sepa-

rator contains a vertex from {v1,k, v2,k, v3,k}, for k ∈ J \ {j}, since (a, v1,k, v2,k, v3,k,

v4,j , v5,j , v6,j , b) is a path in G1, and it contains a vertex from {v4,k, v5,k, v6,k}, for

k ∈ J \ {j}, since (a, v1,j , v2,j , v3,j , v4,k, v5,k, v6,k, b) is a path in G1.

Due to minimality, the separators in Sj contain no other vertices. Thus, we have that

|Sj | = 32(|J|−1). We also note that Sj∩Sk = ∅ if j 6= k. Therefore, the number of minimal

separators of G1 is at least |J | · 32(|J|−1) > 2.1271 · 1023 . Minimal (a, b)-separators for

G` are obtained by taking the union of minimal separators for the different copies of G1.
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Their number is therefore at least (|J | · 32(|J|−1))` = (|J | · 32(|J|−1))
n−2
6|J| ∈ Ω(1.4521n),

where n = ` · 6 · |J |+ 2 is the number of vertices of G`.

As an example of a set claimed to be a separator, consider P = {v2,k | ∀k 6= 1} ∪

{v5,k | ∀k 6= 1}. According to the proof, P ∈ S1. But P is not a separator. The path

(a, v1,1, v2,1v3,1, v4,2, v3,3, v4,1, v5,1, v6,1, b) is still in GV \P . Actually, we can decide exactly

which of the presumed minimal separators actually are separators:

a

b

Figure 6: The induced subgraph GV \P , with one possible path between a and b marked.

Lemma 3.1. Using the same construction as the proof, for any S ∈ Sj to be an (a, b)-

separator, it needs to contain either {v3,k | ∀k 6= j}, {v4,k | ∀k 6= j} or {v3,k, v4,k | ∀k 6=

j, k 6= t for some t 6= j} as a subset.

Proof. Assume, for sake of contradiction, that we have a set S ∈ Sj that does not have any

of the described subsets. This means that there exists some z 6= q such that vz,3, v4,q ∈ S

where z, q 6= j. Then the path (a, v1,j, v2,j, v3,j, v4,q, v3,z, v4,j, v5,j, v6,j, b) is in GV \S, which

means S is not an (a, b)-separator.

A consequence of Lemma 3.1 is that |{s | s ∈ Sj, s is a separator}| ≤ 2 ·3|J |−1+(|J |−

1) ·22. Thus, the total amount of such separators is (2|J | ·3|J |−1 + |J |(|J |−1) ·22)
n

6|J| . This

expression is maximized at |J | = 2, where it is less than 1.2836n < 3
n
3 . This inequality

implies that the construction of the family of graphs G` does not change the bounds of ξn.
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4 Melon Graphs

We conjecture that the melon graphM3,n−2
3

is the graph with the most minimal separators

across all graphs G ∈ G[n]. This is equivalent to the following:

Conjecture. The bound ξn ∈ Θ(3
n
3 ) holds.

4.1 Optimal Melon Graph

We begin by showing M3,n−2
3

is the graph with the most minimal separators among all

melon graphs in G[n].

Lemma 4.1. The number of minimal separators in a melon graph M = (V,E) with `

layers and values k1, k2, ..., k` satisfies

sep(M) ∈ Θ(
∏
i∈[`]

ki) (1)

when
∏
i∈[`]

ki is asymptotically larger than or equal to |V |2.

Proof. We begin by considering the lower bound. In order to create a minimal (a, b)-

separator, one node vi,j is picked for each i ∈ [`]. This is a separator, since for each path

(a, vi,1, ..., vi,ki , b) ∈ E, one node is in the separator. It is minimal, since the removal of

some node vi,j from the separator makes it possible to traverse the path (a, vi,1, ..., vi,ki , b)

from a to b. Thus, sep(M) ∈ Ω(
∏
i∈[`]

ki).

To show that the same holds for the upper bound, we consider the different natures

of minimal separators in M for any pair u, v ∈ V . The cases of separators S we consider

are:

• At most one node from each layer is in S.

• Exactly two nodes from some layer are in S.

• Three or more nodes from some layer are in S.
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• At least one of a and b is in S.

Note that these cases are exhaustive, i.e., every subset S ⊆ V that is a potential

minimal separator is considered in at least one case.

Case 1. Firstly, we show that there exists no minimal separator with at most one node in

each layer that is not already counted as a minimal (a, b)-separator. We show this through

contradiction. Assume there exists some minimal separator S = {vi1,j1 , vi2,j2 , ..., vim,jm}

for distinct values i1, i2, ..., im, and m < `. Let z be an index such that vz,j /∈ S for all

j ∈ {1, 2, ..., kz}. For any pair vx,y, vu,v ∈ V \S, at least one of the following paths must

be in GV \S:

• (vx,y, vx,y+1, ..., vx,kx , b, vu,ku , ..., vu,v)

• (vx,y, vx,y−1, ..., vx,1, a, vu,1, ..., vu,v)

• (vx,y, vx,y+1, ..., vx,kx , b, vz,kz , ..., vz,1, a, vu,1, ..., vu,v)

• (vx,y, vx,y−1, ..., vx,1, a, vz,1, ..., vz,kz , b, vu,ku , ..., vu,v)

See Figure 7 for an example of such a set S. Note that this implies that there also

exists a path between a or b and any node vx,y ∈ V \S. Thus, S is not a separator if

S does not contain a node from every layer, in which case it is already counted as an

(a, b)-separator.

a

b

Figure 7: An example of a set S considered in Case 1. Two nodes and the path between
them are marked in red.
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Case 2. If a minimal separator S includes exactly two nodes vi,x, vi,y where x < y in the

same layer i, it must be the case that exactly one of the nodes it separates is vi,u for some

u ∈ {x+ 1, x+ 2, ..., y− 1}. Otherwise, the separator is not minimal. It must also be the

case that no other node is in the separator, since vi,u is already separated from all other

nodes (except other nodes of the form vi,q for some q ∈ {x + 1, x + 2, ..., y − 1}, but a

(vi,q, vi,u)-separator containing vi,x and vi,y would need to contain three nodes in layer i).

Thus, there are less than |V |2 separators of this form.

Case 3. In the case where a minimal separator includes at least three nodes vi,x, vi,y, vi,z,

where x < y < z, in the same layer i, it must be the case that it separates nodes vi,u, vi,q

for some x < u < y < v < z. But in this case, one of vi,x or vi,z can be removed, which

means the separator is not minimal.

Case 4. If either a and b are in some minimal separator, it can by the same reasoning

include at most one other node. Thus, there can be no more than |V | such separators.

Figure 8 shows an example of such a minimal separator. Finally, if both a or b is in a

minimal separator S, no other node can be in the separator for it to remain minimal.

Thus there is only one such separator.

a

b

Figure 8: An example of a set S considered in Case 4. Two nodes separated are marked
in red.

Thus, we have that sep(M) ≤
∏
i∈[`]

ki + |V |2 + 1 ∈ O(
∏
i∈[`]

ki), which proves the lemma.
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Theorem 4.2. For two melon graphs M3,n−2
3

and M ∈ G[n], the inequality sep(M3,y) ≥

sep(M) is satisfied.

Proof. Note that (1) implies that sep(Mx,n−2
x

) ∈ Ω(x
n
x ). Thus, sep(Mx,n−2

x
) is asymptoti-

cally larger than n3, which means we only need to consider graphs where (1) holds.

Consider the values k1, k2, ..., k` of M . By (1), the theorem is true if and only if

3
n−2
3 ≥

∏
i∈[`]

ki.

Note that n− 2 =
∑
i∈[`]

ki. The inequality is thus equivalent to

∑
i∈[`]

ki ·
ln(3)

3
≥

∑
i∈[`]

ln(ki),

which is true if

ln(3)

3
≥ ln(ki)

ki
for all i ∈ [`].

The function ln(x)
x

has its only maximum at x = e, and is strictly increasing for x < e and

strictly decreasing for x > e. This, combined with noting that ln(3)
3

> ln(2)
2

, shows that

the inequality holds for all ki, thus proving the theorem.

4.2 Bridged Melon Graphs

A bridged melon graph is constructed similarly to a melon graph. The difference lies in

the bridges, which are edges between pairs of nodes vi1,j1 , vi2,j2 for i1 6= i2. Figure 9 shows

an example of a bridged melon graph.

The aim of this section is to provide support for the following conjecture:

Conjecture. For a melon graph M , when adding bridges between any number of pairs

(vi1,j1 , vi2,j2), the number of minimal (a, b)-separators either decreases or stays constant.
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a

b

Figure 9: Bridged melon graph with ` = 4, k1 = 3, k2 = 5, k3 = 4, k4 = 2, and bridges
(v1,2, v2,3), (v2,2, v3,1) and (v2,2, v4,1).

4.2.1 One Bridge

Theorem 4.3. A bridged melon graph M ′ = (V ′, E ′), obtained by adding exactly one

bridge to the melon graph M = (V,E), satisfies sep(M ′) ≤ sep(M).

Proof. Assume without loss of generality that the bridge connects v1,x and v2,y for some

x ∈ [k1] and y ∈ [k2]. Note that this adds the paths (a, v1,1, ..., v1,x−1, v1,x, v2,y, ..., v2,k2 , b)

and (a, v2,1, ..., v2,y−1, v2,y, v1,x, ..., v1,k1) to E ′. To create a minimal separator in M ′, we

need to block these new paths in addition to all paths between a and b in M . Note that

for all layers except the first two, it is still the case that exactly one node from each layer

will be in any minimal separator.

Let S be a minimal (a, b)-separator in M ′. We want to show that every minimal

separator will have exactly one node in the first and second layer. If this is the case, it

must be that sep(M ′) ≤ sep(M), since sep(M) is given in (1) to be the number of ways

to chose one node from each layer. This means the minimal separators of M ′ make up a

subset of the minimal separators of M , thus confirming the inequality.

First note that there is no separator with no nodes in layer l ∈ {1, 2}. If this were the

case, the path (a, vl,1, ..., vl,kl) would still be traversable in M ′\S.

Assume, for sake of contradiction, that there are at least two different nodes v1,j1 , v1,j2 ∈

{v1,j : ∀j} ∩ S. It is obvious that either j1 ≤ x ≤ j2 or j2 ≤ x ≤ j1, since if not, one

of the two nodes could be removed from the separators and it would still block exactly
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a

b

a

b

Figure 10: A bridged melon graph with bridge (v1,x, v2,y). Two different separators in-
cluding v1,j1 , v1,j2 for j1 ≤ x ≤ j2 and some v2,j3 . In the leftmost graph, j3 ≤ y. Neither
separator is minimal.

the same paths. Assume without loss of generality j1 ≤ x ≤ j2. Let v2,j3 be some node

in S. Figure 10 shows how the separator might look. If j3 ≤ y then the separator is not

minimal since v1,j2 can be removed from it. If j3 > y then v1,j1 can be removed. Thus, we

have that any minimal separator in M ′ will have exactly one node in each layer, which

proves the theorem.

For other amounts of bridges, a similar reasoning may apply. However, note that it is

not the case that any separator will have exactly one node in each layer for any bridged

melon graph. Figure 11 gives an example of this. This particular bridged melon graph

will still have less (a, b)-separators than the corresponding melon graph M6,2. Comparing

the two, we see that the bridged one has 10 unique (a, b)-separators, whereas M6,2 has

36. Thus, despite the large amount of nodes included in some separators, this particular

example is consistent with the conjecture.

a

b

Figure 11: Bridged melon graph with two layers. A minimal (a, b)-separator of size 7 is
shown.

5 Conclusion

The main result of this paper is that the best known lower bound of ξn is once again

Ω(3
n
3 ). Consequently, the existence of a graph with more than Ω(3

n
3 ) minimal separators,

that is, whether ξn /∈ Θ(3
n
3 ), is once again an open problem.
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