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Abstract

Lung cancer stands as one of the deadliest forms of cancer. In 2020 alone, the disease

claimed the lives of more than 1.8 million individuals globally [1]. Improvements in the

field of medical imaging technology has led to an accumulation of cancer image data

worldwide. However, the traditional approach of identifying and diagnosing cancer still

relies on manual evaluation of such data. This workflow is time consuming and prone to

errors.

In an attempt to help clinicians, computer models for cancer classification have recently

been developed. The objective of this study is to investigate these models by focusing on

machine learning algorithms specifically developed for the diagnosis of lung cancer.

This study reveals that, based on the analysis of the Kaggle Data Science Bowl 2017

data set [2], the random forest algorithm outperforms the LeNet, AlexNet and VGG16

convolutional neural network architectures. However, if the deep learning models had

undergone further training or if the data set had been more extensive in size, then the

results might have been different.
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1 Introduction

In 2020, cancer caused more than 10 million deaths worldwide [1]. As our lifestyles change

and the global population ages and grows, this number is expected to almost double by

2040 [3]. Among the various types of cancer, lung carcinoma, i.e. cancer in the respiratory

region, is the most deadly [1]. If the disease is detected early, the chances of survival

increase significantly [1].

Improvements in medical imaging technology have made it possible to capture vast

quantities of high resolution medical images from patients. This has led to an accumula-

tion of cancer image data worldwide. Conventional methods of assessing abnormalities in

medical images include uncertain, labour intensive methods such as manual image obser-

vation. In the image data, the presence and type of cancer is not always easily detectable,

which increases the risk of misdiagnosis. This uncertainty could prohibit patients from

being diagnosed early in the disease course, and thereby impact their survival chance

negatively.

When cancer is detected, the malignancy of any observed tumor is classified. The next

step is to identify the tumor characteristics. For instance, there exists a complex micro-

environment within cancerous regions which represent different level of aggressiveness [4].

In some cases, such characteristics can be studied by conducting an invasive surgery known

as biopsy. When a tumor is incorrectly classified and its malignancy goes undetected, it

poses additional risks to the patient.

Computer based models have recently been developed to assist clinicians with their

daily work. This approach relies upon novel imaging processing techniques and machine

learning models. In this project, conventional machine learning algorithms such as ran-

dom forests and convolutional neural networks have been applied to classify benign and

malignant tumors in the lung region.
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Background

A list of prerequisites and their corresponding explanations can be found in this section.

1.1 Quantitative Imaging Biomarkers

Due to recent improvements in medical imaging technology, for example magnetic reso-

nance imaging or computed tomography scans, the information content within medical

images has undergone substantial growth in recent years [5]. This enhanced level of infor-

mation can be utilized as a quantifiable indicator of potential disease.

Medical images provide 2D or 3D quantitative imaging data from the inside of human

organs. Such information can be further processed to be used for diagnosis, prognosis

and prediction purposes in a process is known as QIB, quantitative image biomarking. A

subfield of QIB is radiomics, in which particular image features are extracted, processed

and then analyzed. [6]

These features must be chosen with respect to the set of data and the purpose of the

study, which in this project is lung tumor classification. Examples of extractable features

are tissue density, image entropy — a metric of how diverse the pixel values are; and image

energy — a measure of variance in pixel intensity . The intensity corresponds to the density

of the tissue that is captured. One method of feature extraction is the appliance of filters.

The sequential feature selection filter, SFS, is an effective technique to find and keep only

the most informative features and remove the less predictive ones. Another filter is the

least absolute shrinkage and selection operator (lasso) which assigns additional weights to

relevant features based on their predictive powers. Lastly, the principal component analysis

(PCA) is a dimensionality reduction filter which involve multiple matrix operations. Out

of the thousands of features that exist, deep learning models can be trained to extract

the most relevant features in respect to the data set. In other words, the neural networks

do the feature extraction part automatically. [7]
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1.2 Random Forests and Decision Trees

Decision trees are supervised machine learning algorithms that are implemented for re-

gression and classification tasks. They consist of a series of conditional statements which

split and thereby sort the data. The following schematic flowchart represents an example

of a decision tree:

Figure 1: Subunit of a decision tree. The nodes are represented by boxes and the branches
by arrows. The value parameter stands for [number of classes, number of samples].

The model determines the condition by comparing the entropy in the parent node

against the entropy in the child node. The splitting condition that generates the largest

difference in entropy, also called the information gain, is finally chosen. The information

gain is defined as:

Information Gain = ∆S =
c∑

i=1

pi log2 pi −
c∑

j=1

pj log2 pj (1)

In which p is the probability of randomly choosing a data point in class i and c is the

number of classes. The splitting continues until the entropy of all leaf nodes is 0 or until

the parameters of the model are satisfied. To determine the information gain, all possible

splitting combinations must be tested, resulting in decision trees to be relatively slow and

inappropriate for large sets of data. Another weakness inherent to decision trees is that

unless a maximum tree depth is defined, the tree will continue to split the data until all

Page 3(26)



Nilsson Gravenhorst-Lövenstierne, C V 1 INTRODUCTION

leaf nodes are in a state of zero entropy [8].

Random forests are supervised machine learning models that are generally less prone

to overfitting than decision trees. In the initialization of the model, randomized features

are extracted from a sub section of the data set in a process called bootstrap aggregation.

These features are fed to a set of n decision trees that are inherent to the model. The class

selected by most trees becomes the final output from the random forest. The adoption of

randomness from the bootstrapping improves the generalization capabilities of the model

and thus improves its robustness [9].

1.3 Artificial Neural Networks

Artificial neural networks are data structures inspired by the biological nervous system

used for function approximation purposes. The most primitive unit of a neural network

is the perceptron, see figure 2.

Figure 2: Schematic representation of a perceptron [10], including input data, xn; weights,
wn; biases, b; weighted sum and activation function. (CC BY-SA 4.0)

In the instantiation of the model, each node-connection is assigned a randomized

weight and bias. The input in the form of a image-matrix is then multiplied with the

weights and summarized in the following mathematical operation called the weighted

sum, where b is the bias:
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n∑
i=1

(xiwi + b) (2)

The model must be introduced to a dimension of non-linearity to be able to adapt itself

to the input data. This is achieved by the activation function which takes the weighted sum

as input. Its output either serves as input to a new perceptron or as the final classification

of the model. If the activation function had been linear, then the model would only be

able to learn linear relationships between the input and outputs.

A neural network is composed of an input layer, at least one hidden layer with n

neurons and an output layer. In a densely connected neural network, every node is inter-

connected by weights. The parts of a neural network which must be manually configured,

e.g. the number of nodes per layer or the activation function, are called hyperparameters.

The hyperparameters make up the model architecture and can influence the performance

of the model significantly. Choosing the right hyperparameters is often the main challenge

in constructing deep learning networks.

1.4 Loss Functions and Optimizers

Loss functions and optimizers are components of neural networks that are essential to

their training process. In supervised neural networks, the loss function, for example mean

squared error or cross entropy loss, is used to calculate the difference between the predicted

class and the true class. An optimizing function numerically derives the loss function, with

respect to its hyperparameters. This derivative helps the optimizer to tune the weights of

the neural network in a process called backpropagation. Simultaneously, the input data

is passed to the model n times, also called the number of epochs. This cycle is known as

model training, and ideally continues until the loss function converges at one of its local

minimum values.
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1.5 Convolutional Neural Networks

A convolutional neural network (CNN) automatically extracts features that are relevant

for the classification of the image data. A typical convolutional neural network architecture

consists of convolutional layers, see figure 3, that are alternated by pooling layers. This

structure is finally interconnected with a densely connected neural network which gives

the final classification.

The convolutional layer, a subunit of the convolutional neural network, initially con-

volves a tensor into feature maps that contain the extracted features from the initial

tensor. In the domain of greyscaled medical images, this tensor is a two dimensional

matrix, see figure 3.

The convolving operation involves a filter matrix, also known as a kernel, that dis-

cretely moves over the input matrix. For each step, the sum of the dot product between

the input matrix and the kernel is calculated and saved in the feature map. In the initial-

ization of the model, the kernel values are randomized. Yet, as the model backpropagates,

these values are tuned by the optimizing function in the training process to extract in-

creasingly complex attributes. The convolving operation is summarized in equation 3.

m∑
i=1

n∑
j=1

(Tij ·Kij) (3)

Where Kij is the kernel and Tij is the input tensor with the dimensions m × n. The

position of the kernel is represented by i× j. An approach used in this project is to apply

a kernel of dimensionality 3×3. This example is visualized in figure 3, where the variables

i, j,m, n equal 3.
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Figure 3: Structure of a convolutional layer. The sum of the cross products between the
image patch and the kernel is calculated and projected onto the feature map.

Multiple feature maps can be extracted from a single input matrix. The feature maps

are either transferred to another convolutional layer or to a neural network, where they

are ultimately classified. To minimize computing time, the feature maps can be passed

through a pooling layer, where their dimensionality is reduced.

Figure 4 visualizes the transformation process of an image after two convolutions, g1

and g2, in the lung cancer data set:

Figure 4: Application of two convolutional layers.

1.6 Image Augmentation, Feature Learning, Transfer Learning

A common phenomena for machine learning models is to develop more parameters than

what is realistic for the data they are trained on. Just like a polynomial can be modified

to fit n data points, a machine learning model can overadjust itself and thereby lose its

ability to accurately classify new data. This phenomena is called overfitting, and can be
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partly counteracted by image augmentation, feature learning and transfer learning.

Image augmentation is a technique that can be implemented to increase the size of the

training data set. This is achieved by applying geometrical or intensity transformations to

the data with techniques such as filter application, rotation, flipping and zooming. When

dealing with limited data sets, large number of features increases the risk of overfitting.

By reducing features that are associated to one another, the authenticity of the data set

increases.

As the architecture of a convolutional neural network gets increasingly intricate, the

model transitions from being able to detect primitive features such as edges, corners and

diagonals to more complex features. The better a model is at detecting these primitive

structures, the better suited it will be for more advanced tasks. Pre-trained models trained

on extensive datasets such as the ImageNet [11] can be imported and integrated to a

preexisting neural network to improve its generalization capabilities.

1.7 Model Evaluation: Metrics

When validating a machine learning model, various metrics are used to quantify its per-

formance. In the manual optimization of the model, this information gives an indication

of what hyperparameters that needs to be tuned. While a single metric can be misrep-

resentative, combining multiple can give a more accurate representation of the model

performance. One method for model optimization is hyperparameter tuning, where hy-

perparameters are adjusted while measuring the model’s performance. Another method

for model evaluation is K-fold cross-validation. This algorithm trains the model multi-

ple times, using different validation data each time, and thus reduces the risk of biased

datasets.

A prerequisite for calculating many metrics is the creation of a confusion matrix, which

includes the four possible outcomes of a binary classifier: true positive, false positive, true

negative, and false negative. To clarify, a false positive diagnosis occurs when a patient’s

tumor is predicted as malignant when it is actually benign.
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1.7.1 Accuracy

Accuracy is a metric used to measure the proportion of correctly classified predictions.

The definition of accuracy is found in expression 4.

Accuracy =
TP + TN

TP + TN + FP + FN

(4)

Where TP , TN , FP and FN correspond to true positive, true negative, falsely positive

and falsely negative.

1.7.2 AUC: Area Under the Curve

The AUC value is a measurement of the model’s ability to distinguish between positive

and negative classes. The AUC is identical to the area under the graph that is created

as the false positive rate, FP

FP+TN
, is plotted against true positive rate, TP

TP+FP
. For each

epoch in the training process of the model, a confusion matrix is generated, from which

the graph is plotted. The closer the AUC value is to 1, the better the value. See figure 5.

Figure 5: Area under the curve, AUC, generated from a logistic regression task.

1.7.3 Loss

The loss-function is an essential part of the learning algorithm which quantifies the mis-

match between the model’s predicted outputs and the actual true values. Furthermore,
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loss can serve as a certification of the accuracy metric, particularly in scenarios involving

imbalanced datasets.

1.8 Previous Studies

The field of deep learning as an extention of machine learning emerged in 2006. In 2012,

the AlexNet architecture was invented by computer scientist Alex Krizhevsky and soon

thereafter, the VGG16 architecture was introduced at Oxford University. [12]

Since then, a variety of increasingly efficient convolutional neural network (CNN)

architectures have been developed. Figure 6 visualizes the progress in performance of

different CNN architectures on the ImageNet data set.

Figure 6: The graph compares CNN architectures based on their accuracy (y-axis) and
the computational power measured in gigaflops (x-axis) [13]. (ArXiv License)

2 Method

The project pipeline included data preprocessing, radiomic feature extraction, hyperpa-

rameter tuning, synthetic minority oversampling techniques, k-fold cross validation anal-

ysis, dimensionality reduction, convolutional neural networks with AlexNet, LeNet and

VGG16 architectures and model validation.

Page 10(26)



Nilsson Gravenhorst-Lövenstierne, C V 2 METHOD

2.1 Data Preprocessing

The Kaggle Data Science Bowl 2017 data set [2], containing 1297 images of benign and

malignant pulmonary nodules, was used in this project. Figure 7 contains 32 samples of

the data set, where the the labels 0 and 1 correspond to the classes benign and malignant

respectively.

Figure 7: 16 samples from the Kaggle Data Science Bowl 2017 data set [2] used in this
study for visualization purposes. A title of 1 corresponds to the malignant class, while a
title of 0 corresponds to the benign class.

2.2 Radiomic Feature Extraction

A feature extracting method from the radiomics library was implemented to extract 1070

radiomic features from the Kaggle Data Science Bowl 2017 data set, containing low-dose

computer tomography images of the chest region from lung cancer patients.

2.3 Hyperparameter Tuning

The random forest machine learning model was instantiated. The hyperparameters max-

imum tree depth and number of estimators were tuned combination wise via the Grid-

SearchCv module to optimize the performance of the model. See results in figure 12.
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2.4 Synthetic Minority Oversampling Techniques

A synthetic minority oversampling technique (SMOTE) was applied to counteract the

imbalance between the two classes of the data set, benign (67.5%) and malignant (32.5%).

This imbalance had a degrading effect on performance for the minority class. The SMOTE

algorithm creates synthetic data points by interpolation to even the relationship between

the classes.

2.5 K-fold Cross Validation Analysis

Five-fold cross validation was applied to the data set to confirm the absence of statistical

errors when splitting the data into training and validation sets. For each validation, the

mean accuracy and AUC were measured. See results in table 2.

2.6 Dimensionality Reduction and Feature Selection

To reduce the risk of overfitting, the following filter methods were applied to the data

set: least absolute shrinkage and selection operator (lasso), dimensionality reduction with

principal component analysis (PCA) and sequential feature selection (SFS). Five-fold

cross validation was finally applied to evaluate the performance of the model. See results

in table 2

2.7 Convolutional Neural Network - LeNet

A convolutional neural network with the LeNet architecture, see figure 8, was configured

via TensorFlow Keras [14] and applied to the data set. The loss value and the binary

accuracy were measured.
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Figure 8: LeNet architecture composed of 2 convolutional layers, 2 max pooling layers and
2 densely connected layers.

2.8 Convolutional Neural Network - AlexNet

The AlexNet architecture was instantiated, see figure 9, and validated on accuracy and

loss. See results in figure 11.

Figure 9: AlexNet architecture composed of 5 convolutional layers, 2 max pooling layers
and 2 densely connected layers.

2.9 Transfer Learning with VGG16

A convolutional neural network with the VGG16 architecture, see figure 10, pre-trained

on the ImageNet data set [11], containing 14,000,000 images was imported from the keras

library [14]. The VGG16 model was integrated with a three layer densely connected neural

network.

Figure 10: VGG16 architecture composed of 13 convolutional layers, 4 max pooling layers
and 3 densely connected layers.
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3 Results

Results from the project are presented in this section. In most graphs, the mean value after

the graph has reached a plateau is plotted with decision boundaries of ± one standard

deviation.

3.1 Random Forest Metrics

The AUC of the random forest model with extracted features was measured in an interval

of 0-100 estimators, i.e. number of decision trees, and 0-50 maximum depths.

In the left graph of figure 11, the variance around the mean value seems to follow a

gaussian distribution, since 80% of the data points are found within the first standard

deviation and the rest within the second. This suggests convergence around the mean

AUC of 0.764.

In the right graph of figure 11, the AUC initially increases rapidly and reaches a plateau

after ∼20 estimators. At that point, roughly 70% of the data points are positioned within

the first boundary from the mean. As the number of estimators increase, the number of

data points that exceed the first standard deviation appear to decrease. These two aspects

suggests convergence around the mean AUC of 0.781.

Figure 11: Random forest learning curves. The model to the left is configured with 20
estimators while the model to the right is configured with a maximum depth of 5. The
data in both graphs originates from the validation set of the data.
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A summary of the metrics in figure 11 is presented in table 1.

Table 1: Random forest - statistics summary.

Hyperparameter Mean AUC Mean Accuracy

Number Estimators 0.781± 0.006 0.780± 0.007

Max Depth 0.764± 0.014 0.725± 0.019

Figure 12 visualizes the graph that is generated when the two hyperparameters from

figure 11 are combined. An optimal AUC value of 0.91 is achieved when the number of

estimators is 41 and the maximum depth is 21. This could be a statistical anomaly. What’s

of importance is that the plane appears to reach a plateau as both hyperparameters exceed

a value of 20, indicating that no more training is needed.

Figure 12: The mesh visualizes the surface plot created when the number of estimators
and maximum depth is plotted against AUC. The AUC values are multiplied by 10.
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The mean AUC from five fold cross validation after application of lasso, PCA and SFS

filters can be found in table 2. During the validation process, a range of 2-30 features were

tested for the PCA, while 10 features were tested for the SFS.

Table 2: Mean AUC after filter application.

Filter Method Mean AUC

Lasso 0.777

PCA dimension reduction 0.810

SFS algorithm 0.876

3.2 Convolutional Neural Network Metrics

The accuracy and loss values from n epochs of training the LeNet convolutional neural

network are found in figure 13.

In the left graph of figure 13, 76% of the data points in the domain [20, 50] are posi-

tioned within one standard deviation from the mean accuracy. The distribution of points

can therefore be deviated from a gaussian distribution, indicating that the graph has

reached convergence. Yet, in a more narrow interval, e.g. [40, 50], a majority of the data

points have moved towards the second deviation. Ultimately, this indicates that conver-

gence has not been reached and that further training is needed. The loss learning curve

confirms this, since as the number of epochs increases, the loss continues to decline. Sub-

sequently, there is an overrepresentation of data points in the lower boundary.
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Figure 13: LeNet CNN learning curves. The orange graphs represent validation scores,
while the blue graphs represent training scores. As the validation graphs stabilize, the
mean value with standard deviations boundaries is plotted.

The convolutional neural network with the AlexNet architecture was validated with

identical configurations as those of the LeNet model.

The graphs in figure 14 appear to follow the same trend as their LeNet counterparts,

see figure 13. Yet, the noisiness of the graphs in figure 14 seems higher despite the learning

rate being the same. This is confirmed by the slight fluctuation in standard deviation, ∆σ,

between the graphs in figure 13 and 14, where ∆σleft = 0.00894 and ∆σright = 0.00816,

see table 3.

Figure 14: AlexNet CNN learning curves. The orange graphs represent validation scores,
while the blue graphs represent training scores. As the validation graphs stabilize, the
mean value with standard deviation boundaries is plotted.
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The convolutional neural network with the pre-trained VGG16 architecture was vali-

dated with identical configurations as those of LeNet and AlexNet.

In the left graph of figure 15, 76.7% of the data points in the domain [15, 50] are

positioned within one standard deviation from the mean accuracy of 0.729. The data

points may therefore deviate from a gaussian distribution. Thus, they can be considered to

converge. Simultaneously, the graph of the training accuracy continues to rise, indicating

that the model is becoming increasingly overfitted. This is supported by the corresponding

loss graph in figure 15, in which the impact of training appears to cease after 15 epochs.

Figure 15: Learning curves from the VGG16 CNN model with transfer learning. The
orange graphs represent validation scores, while the blue graphs represent training scores.
As the validation graphs stabilize, the mean value with standard deviation boundaries is
plotted.

Table 3 provides a summary of the mean validation accuracy and loss from the LeNet,

AlexNet, and VGG16 models. Standard deviations are included.

Table 3: CNN model summary.

Architecture Validation Accuracy Validation Loss

LeNet 0.729± 0.008 0.530± 0.009

AlexNet 0.729± 0.009 0.538± 0.010

VGG16 with pre-training 0.746± 0.025 0.535± 0.008
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The information in table 1 and 3 is visualized in figure 16.

Figure 16: Visualization of table 1 and 3. The squares represent the mean value for the
respective models while the error bars represent the boundary of one standard deviation
from the mean. The highlighted area visualizes the overlap between the standard devia-
tions.

4 Discussion

4.1 Model Comparison

Neither the testing graphs of the LeNet model nor the AlexNet model appear to converge

within the interval of 50 epochs, suggesting that more training had been necessary in prior

to validation. While the testing graph of the VGG16 model appears to converge around

its mean accuracy of 0.746 and mean loss of 0.535, the corresponding accuracy and loss of

the training graph continues to improve. Consequently, the model becomes increasingly

overfitted to the training data.

The similarities between the mean AUC of the random forest model, 0.781±0.006, and

the corresponding mean accuracy of 0.780± 0.007 are notable. The relatively high values

indicate that the model persistently discriminates the two classes from one another and

predicts the correct classes sufficiently. After application of the sequential feature filter,

i.e. SFS, the accuracy reached a maximum of 87.6%.
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4.1.1 Standard Deviation Overlap

The mean accuracy among the CNN models varies slightly, with a variance of 2.3% within

the range of accuracy [0.729, 0.746]. As can be observed in the left graph of figure 16, the

standard deviation of the LeNet and AlexNet models fully overlap one another. Thus,

there is at least a 68.3% chance that the models will perform within the same distribution.

Because of this, it is not possible to nominate one of the model architectures as the best

with certainty.

Further, there is overlap between the mean accuracy of the VGG16 model and the

LeNet and AlexNet models, resulting in a 45.3% chance of performing within the same

distribution, as shown in equation 5 in the appendix. The exception to this trend is the

mean accuracy of the random forest, which is further than one standard deviation away

from the upper boundary of the VGG16 model. Consequently, the likelihood of the VGG16

and the random forest model to generate an accuracy belonging to both distributions is

very low: 0.771%, see equation 6 in the appendix. This suggests that the random forest

model consistently generates higher levels of accuracy than its VGG16 counterpart.

4.1.2 Random Forest vs. Convolutional Neural Networks

The random forest frequently outperforms the deep learning models with a few percentage

units. Also, the LeNet, AlexNet and VGG16 models show more or less prevalent indica-

tions of overfitting. This suggest that the relationship between the amount of data in the

data set and the amount of parameters in the model architecture is insufficient. By adjust-

ing hyperparameters such as batch size, model architecture, number of layers or neurons

per layer, this relationship could somewhat have been balanced. Yet, in contrary to the

random forest, no clear signs of convergence was observed in the deep learning models.

This could imply that the performance of the deep learning models would improve if the

number of epochs increased. Also, the extensive complexity of the deep learning models

entails that if the number of data points were to increase, the performance of the deep

learning models would likely improve too.
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4.2 Applicability in Healthcare

A study conducted in Turkey, specifically about the Bahcesehir Mammographic Screen-

ing program, evaluated the breast cancer detection rate among radiologists. The study

reported an average accuracy of 67.3% [15]. When supervised by the Lunit deep learning

model [16], this accuracy improved to 83.6%.

4.2.1 Degree of Discrimination

The pre-trained VGG16 model scored an average accuracy of 74.7%, see table 3. The

uneven distribution of classes, where 67.5% of samples belonged to the benign class and the

remaining 32.5% to the malignant class makes this score rather unreliable. For example,

classifying all data points as benign would generate an accuracy of 67.5%. Therefore, an

accuracy of 74.7% is just a 9.6% improvement in model performance, compared to random

guessing.

In contrast, the pre-processed data that was provided to the random forest model

was perfectly balanced, where 50% of the data belonged the respective classes due to

the implementation of synthetic minority oversampling techniques. Consequently, a mean

accuracy of 78.1% would correspond to a 56.2% improved model accuracy, compared to

randomly guessing.

4.2.2 Clinical Implementations

Although the VGG16 accuracy of 74.7% outperforms that of the average radiologist in the

study, it is still too low to be applicable for clinical implementations involving more critical

types of cancer [17]. For example, the chances of surviving more than five years of lung

cancer is approximately five times worse than the corresponding survival rate for breast

cancer [18] [19]. Further, due to the nature of the normal distribution, the risk for the

VGG16 model to perform worse than its current mean accuracy of 74.7% is 47.5%. Also,

the risk of the VGG16 model to perform worse than its lower first standard deviation,

72%, is 15.8%. Despite the accuracy of the random forest being notably better than that

of the VGG16 model, see figure 16; 22% of the images are still falsely classified, suggesting

Page 21(26)



Nilsson Gravenhorst-Lövenstierne, C V 4 DISCUSSION

that further improvements are needed before clinical implementation.

4.3 Further Studies

In the pre-processing step of the data, the original three dimensional NIFTI files were

converted to the 2D JPEG format.

NIFTI images contain unique features such as dimensionality, bit depth and tissue

density. For example, the tissue density of lungs, represented by pixel intensity; typically

vary within the shade-range [−400, 1000]. When converting from NIFTI to JPEG, the

intensity range is adjusted to fall within the shade range of [0, 255]. This adjustment is

needed because of the 8-bit JPEG compression, but it results in the loss of information,

which can negatively impact the model’s performance.

Also, in the conversion from the three dimensional NIFTI format to JPEG, only the

axial view, the head-to-foot axis, was converted. If the sagittal view, parallel to the sides

of the patient; and the coronal view, perpendicular to the front of the patient; had been

included, the data would better have represented the human respiratory region.

In addition, the original resolution of the images was reduced to 244 × 244 × 1 to

be compatible with the VGG16 model. As the pulmonary nodules take up very few pix-

els, information about their internal heterogeneity and shape could be lost. This loss of

information could have had further negative effects on the model performance.

To avoid these deficiencies, the pydicom library could have been implemented to imme-

diately convert the DICOM files to readable numpy arrays. Also, the model architectures

could have been modified to avoid the issue of information loss. These measures would

likely improve the model’s performance but would also considerably extend its training

time. If more time and processing power had been available, this would have been the

optimal approach to take.
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5 Conclusion

The study reveals that, based on the analysis of the Kaggle Data Science Bowl 2017

data set [2], the random forest algorithm outperforms the LeNet, AlexNet and VGG16

convolutional neural network architectures. However, if the deep learning models had

undergone further training or if the data set had been more extensive in size, then the

results might have been improved.
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A Code Access

For the part of the project that involved radiomics feature extraction, part 2.1-2.6 of the

method, the following in-house material was modified and optimized:

https://github.com/Astarakee/Radiomics_pipeline [20]

For the part of the project that involved deep learning models such as convolutional

neural networks and densely connected neural networks, the following code was used:

https://github.com/CarlViggo/Carl-Viggo---Rays-2023/blob/main/Rays%2C_DL_

Project%2C_Carl_Viggo_2023.ipynb

B Complementary Data

In equation 5 the probability of the AlexNet and the VGG16 model to generate an accu-

racy belonging to both distributions is calculated.

P1 =

∫ 0.71
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0.009
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· e−
1
2(
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2

dx+
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dx = 0.45319... ≈ 0.453

(5)

In equation 6 the probability of the VGG16 and the random forest model to generate

an accuracy belonging to both distributions is calculated.

P2 =

∫ 0.7561
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dx = 0.0006724... ≈ 0.00067

(6)
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